【題目】已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項(xiàng)和,向量 =(1,bn), =(an﹣1,Sn), ∥ .
(1)若bn=2,求數(shù)列{an}通項(xiàng)公式;
(2)若bn= ,a2=0.
①證明:數(shù)列{an}為等差數(shù)列;
②設(shè)數(shù)列{cn}滿足cn= ,問是否存在正整數(shù)l,m(l<m,且l≠2,m≠2),使得cl、c2、cm成等比數(shù)列,若存在,求出l、m的值;若不存在,請說明理由.
【答案】
(1)解:因?yàn)? =(1,bn), =(an﹣1,Sn), ∥ .
得Sn=(an﹣1)bn,當(dāng)bn=2,則Sn=2an﹣2 ①,
當(dāng)n=1時,S1=2a1﹣2,即a1=2,
又Sn+1=2an+1﹣2 ②,
②﹣①得Sn+1﹣Sn=2an+1﹣2an,
即an+1=2an,又a1=2,
所以{an}是首項(xiàng)為2,公比為2的等比數(shù)列,
所以an=2n.
(2)解:①證明:因?yàn)? ,則2Sn=nan﹣n③,
當(dāng)n=1時,2S1=a1﹣1,即a1=﹣1,
又2Sn+1=( n+1)an+1﹣(n+1)④,
④﹣③得
2Sn+1﹣2Sn=(n+1)an+1﹣nan﹣1,
即(n﹣1)an+1﹣nan﹣1=0 ⑤,
又nan+2﹣(n+1)an+1﹣1=0⑥
⑥﹣⑤得,nan+2﹣2nan+1+nan=0,
即an+2+an=2an+1,所以數(shù)列{an}是等差數(shù)列.
②又a1=﹣1,a2=0,
所以數(shù)列{an}是首項(xiàng)為﹣1,公差為1的等差數(shù)列.
an=﹣1+(n﹣1)×1=n﹣2,所以 ,
假設(shè)存在l<m(l≠2,m≠2),使得cl、c2、cm成等比數(shù)列,即 ,
可得 ,
整理得5lm﹣4l=4m+4即 ,由 ,得1≤m≤8,
一一代入檢驗(yàn) 或 或 或 或 或 或 或
由l<m,所以存在l=1,m=8符合條件.
【解析】(1)利用兩個向量平行的坐標(biāo)關(guān)系得到Sn=(an﹣1)bn , 進(jìn)一步對n取值,得到數(shù)列{an}是等差數(shù)列;(2)①由 ,則2Sn=nan﹣n③,又2Sn+1=( n+1)an+1﹣(n+1)④,兩式相減即可得到數(shù)列{an}的遞推公式,進(jìn)一步對n 取值,得到數(shù)列{an}是首項(xiàng)為﹣1,公差為1的等差數(shù)列.
②由①得到數(shù)列{cn}通項(xiàng)公式,根據(jù)m,l的范圍討論可能的取值.
【考點(diǎn)精析】本題主要考查了等差關(guān)系的確定和數(shù)列的通項(xiàng)公式的相關(guān)知識點(diǎn),需要掌握如果一個數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù),即-=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|,a∈R,g(x)=x2﹣1.
(1)當(dāng)a=1時,解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017福建三明5月質(zhì)檢】已知函數(shù), .
(Ⅰ)當(dāng)時,求證:過點(diǎn)有三條直線與曲線相切;
(Ⅱ)當(dāng)時, ,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形中, ,矩形所在的平面與平面垂直,且.
(Ⅰ)求證:平面平面;
(Ⅱ)若為線段上一點(diǎn),平面與平面所成的銳二面角為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某展覽館用同種規(guī)格的木條制作如圖所示的展示框,其內(nèi)框與外框均為矩形,并用木條相互連結(jié),連結(jié)木條與所連框邊均垂直.水平方向的連結(jié)木條長均為8cm,豎直方向的連結(jié)木條長均為4cm,內(nèi)框矩形的面積為3200cm2 . (不計木料的粗細(xì)與接頭處損耗)
(1)如何設(shè)計外框的長與寬,才能使外框矩形面積最。
(2)如何設(shè)計外框的長與寬,才能使制作整個展示框所用木條最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足: =3n2an+,an≠0,n≥2,n∈N*.
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時,數(shù)列{an}是遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的是( )
A.已知f(x)=sin2x+ ,則f(x)的最小值是2
B.已知數(shù)列{an}的通項(xiàng)公式為an=n+ ,則{an}的最小項(xiàng)為2
C.已知實(shí)數(shù)x,y滿足x+y=2,則xy的最大值是1
D.已知實(shí)數(shù)x,y滿足xy=1,則x+y的最小值是2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com