16.設(shè)G為三角形ABC的重心,且$\overrightarrow{AG}$•$\overrightarrow{BG}$=0,若$\frac{1}{tanA}+\frac{1}{tanB}=\frac{λ}{tanC}$,則實(shí)數(shù)λ的值為$\frac{1}{2}$.

分析 利用G點(diǎn)為△ABC的重心,且$\overrightarrow{AG}$•$\overrightarrow{BG}$=0得到$\overrightarrow{AG}•\overrightarrow{BG}$=0,進(jìn)一步得到用$\overrightarrow{BA}$、$\overrightarrow{BC}$表示,得到三邊關(guān)系,將所求轉(zhuǎn)化為三角的弦函數(shù)表示整理即得可.

解答 解:G為三角形ABC的重心,且$\overrightarrow{AG}$•$\overrightarrow{BG}$=0,∴$\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}$•$\frac{\overrightarrow{BA}+\overrightarrow{BC}}{3}$=0,
即$\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}$•$\frac{\overrightarrow{AC}-2\overrightarrow{AB}}{3}$=0,∴b2-2c2-2bc•cosA=0.
又$\frac{1}{tanA}+\frac{1}{tanB}=\frac{λ}{tanC}$,即$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{λcosC}{sinC}$,
∴λ=($\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$ )•$\frac{sinC}{cosC}$=$\frac{sinBcosA+cosBsinA}{sinAsinB}$•$\frac{sinC}{cosC}$ 
=$\frac{sin(A+B)}{sinAsinB}$•$\frac{sinC}{cosC}$=$\frac{{sin}^{2}C}{sinA•sinB•cosC}$=$\frac{{c}^{2}}{ab•\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了三角形重心的性質(zhì)以及數(shù)量積的運(yùn)算和余弦定理的運(yùn)用;關(guān)鍵是得到三邊的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在直角梯形ABCP中,$CP∥AB,CP⊥CB,AV=BC=\frac{1}{2}CP=2$,D是CP的中點(diǎn),將△PAD沿AD折起,使得PD⊥平面ABCD.

(Ⅰ)求證:平面PAD⊥平面ABCD
(Ⅱ)若E在CP上且二面角E-BD-C所成的角的余弦值為$\frac{{\sqrt{3}}}{3}$,求CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$sinαsin(α+\frac{π}{2})=\frac{{\sqrt{2}}}{3}$,則cos2α=$±\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.曲線y=$\frac{1}{4}{x^2}$在點(diǎn)(2,1)處的切線與x軸、y軸圍成的封閉圖形的面積為(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a∈R,則復(fù)數(shù)z=$\frac{3-ai}{i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限是a≥0的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}中${a_n}={({-1})^{\frac{{n({n+1})}}{2}}}({2n-1})$,設(shè){an}的前n項(xiàng)和為Sn,則S101的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|0<x<2},B={x|x2-1<0},則A∪B=( 。
A.(-1,1)B.(-1,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)某總體是由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成的,利用下面的隨機(jī)數(shù)表依次選取6個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第一行的第三列數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第6個(gè)個(gè)體的編號(hào)為19.
1818  0792  4544  1716  5809  7983  8619
6206  7650  0310  5523  6405  0526  6238.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知向量$\vec a=({cos\frac{3}{2}x,sin\frac{3}{2}x}),\vec b=({cos\frac{x}{2},-sin\frac{x}{2}})$,且$x∈({0,\frac{π}{2}})$.
(1)求$\vec a•\vec b$及$|{\vec a+\vec b}|$;
(2)若$f(x)=\vec a•\vec b-2λ|{\vec a+\vec b}|$的最小值為$-\frac{3}{2}$,求正實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案