5.設(shè)某總體是由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成的,利用下面的隨機(jī)數(shù)表依次選取6個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第一行的第三列數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第6個(gè)個(gè)體的編號(hào)為19.
1818  0792  4544  1716  5809  7983  8619
6206  7650  0310  5523  6405  0526  6238.

分析 根據(jù)隨機(jī)數(shù)表,依次進(jìn)行選擇即可得到結(jié)論.

解答 解:從從隨機(jī)數(shù)表第一行的第三列數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字小于20的編號(hào)依次為18,07,17,16,09,19則第5個(gè)個(gè)體的編號(hào)為19.
故答案為:19

點(diǎn)評(píng) 本題主要考查簡(jiǎn)單隨機(jī)抽樣的應(yīng)用,正確理解隨機(jī)數(shù)法是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若$a=2\int_{-3}^3{({x+|x|})dx}$,則在${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^a}$的展開(kāi)式中,x的冪指數(shù)不是整數(shù)的項(xiàng)共有15項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)G為三角形ABC的重心,且$\overrightarrow{AG}$•$\overrightarrow{BG}$=0,若$\frac{1}{tanA}+\frac{1}{tanB}=\frac{λ}{tanC}$,則實(shí)數(shù)λ的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后得到函數(shù)g(x)的圖象如圖所示,則函數(shù)f(x)的解析式是( 。
A.$f(x)=sin({2x-\frac{π}{6}})$(x∈R)B.$f(x)=sin({2x+\frac{π}{6}})$(x∈R)C.$f(x)=sin({2x-\frac{π}{3}})$(x∈R)D.$f(x)=sin({2x+\frac{π}{3}})$(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示的多面體中,ABCD是平行四邊形,BDEF是矩形,ED⊥面ABCD,∠ABD=$\frac{π}{6}$,AB=2AD.
(Ⅰ)求證:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知x>0,y>0,且$\frac{1}{3x+y}$+$\frac{2}{x+2y}$=2,則x+y的最小值是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin($\frac{5π}{6}$-2x)-2sin(x-$\frac{π}{4}$)cos(x+$\frac{3π}{4}$).
(1)求函數(shù)f(x)的最小值正周期和單調(diào)遞增區(qū)間;
(2)若x0∈[$\frac{π}{3}$,$\frac{7π}{12}$],且f(x0)=$\frac{1}{3}$,求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.?dāng)?shù)列{an}滿(mǎn)足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*),$\frac{{a}_{2017}}{{a}_{1}+{a}_{2}+…+{a}_{2016}}$=(  )
A.$\frac{1009}{1008}$B.$\frac{2015}{1007}$C.$\frac{2016}{2015}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=eax(a≠0).
(1)當(dāng)$a=\frac{1}{2}$時(shí),令$g(x)=\frac{f(x)}{x}$(x>0),求函數(shù)g(x)在[m,m+1](m>0)上的最小值;
(2)若對(duì)于一切x∈R,f(x)-x-1≥0恒成立,求a的取值集合;
(3)求證:$\sum_{i=1}^n{\frac{1}{{i{{({\sqrt{e}})}^i}}}}<\frac{4}{e}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案