11.若a∈R,則復數(shù)z=$\frac{3-ai}{i}$在復平面內對應的點在第三象限是a≥0的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用復數(shù)的運算法則、不等式的解法、幾何意義即可得出.

解答 解:復數(shù)z=$\frac{3-ai}{i}$=$\frac{-i(3-ai)}{-i•i}$=-3i-a在復平面內對應的點(-a,-3)在第三象限,∴$\left\{\begin{array}{l}{-a<0}\\{-3<0}\end{array}\right.$,解得a>0.
∴復數(shù)z=$\frac{3-ai}{i}$在復平面內對應的點在第三象限是a≥0的充分不必要條件.
故選:A.

點評 本題考查了復數(shù)的運算法則、不等式的解法、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}的前n項和,則$\frac{{2{S_n}+8}}{{{a_n}+3}}({n∈{N^*}})$的最小值為( 。
A.$\frac{5}{2}$B.$\frac{8}{3}$C.$2\sqrt{5}-2$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖1,在高為2的梯形ABCD中,AB∥CD,AB=2,CD=5,過A、B分別作AE⊥CD,BF⊥CD,垂足分別為E、F.已知DE=1,將梯形ABCD沿AE、BF同側折起,得空間幾何體ADE-BCF,如圖2.

(Ⅰ)若AF⊥BD,證明:△BDE為直角三角形;
(Ⅱ)若DE∥CF,$CD=\sqrt{3}$,求平面ADC與平面ABFE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=1,a2=4,且對任意m,n,p,q∈N*,若m+n=p+q,則有am+an=ap+aq
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和為Sn,求證:$\frac{1}{4}$≤Sn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.過拋物線y2=4x焦點F的直線交拋物線于A,B兩點,交其準線于點C,且A,C位于x軸同側,若|AC|=2|AF|,則直線AB的斜率為( 。
A.±1B.$±\sqrt{3}$C.±2D.$±\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設G為三角形ABC的重心,且$\overrightarrow{AG}$•$\overrightarrow{BG}$=0,若$\frac{1}{tanA}+\frac{1}{tanB}=\frac{λ}{tanC}$,則實數(shù)λ的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設復數(shù)z滿足z(3+i)=10i(i為虛數(shù)單位),則z的共軛復數(shù)為( 。
A.-1+3iB.1-3iC.1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示的多面體中,ABCD是平行四邊形,BDEF是矩形,ED⊥面ABCD,∠ABD=$\frac{π}{6}$,AB=2AD.
(Ⅰ)求證:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.高三(15)班共有學生60人,現(xiàn)根據座號,用系統(tǒng)抽樣的方法,抽取一個容量為5的樣本,已知3號,15號,45號,53號同學在樣本中,那么樣本中還有一個同學座號不能是( 。
A.26B.31C.36D.37

查看答案和解析>>

同步練習冊答案