4.以坐標原點為極點,以x軸的非負半軸為極軸建立極坐標系,已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}}\right.$(θ為參數(shù),θ∈[0,π]),直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}}\right.$(t為參數(shù)).
(1)點D在曲線C上,且曲線C在點D處的切線與直線x+y+2=0垂直,求點D的極坐標;
(2)設直線l與曲線C有兩個不同的交點,求直線l的斜率的取值范圍.

分析 (1)設D點坐標為$({\sqrt{2}cosθ,\sqrt{2}sinθ})$,由曲線C在點D處的切線與直線x+y+2=0垂直,求點D的坐標,化為極坐標可得答案;
(2)先求出直線l:y=k(x-2)+2與半圓x2+y2=2(y≥0)相切時k的值,及AB的斜率,進而可得答案.

解答 解:(1)設D點坐標為$({\sqrt{2}cosθ,\sqrt{2}sinθ})$,
由已知得C是以O(0,0)為圓心,$\sqrt{2}$為半徑的上半圓,
因為C在點D處的切線與l垂直,
所以直線OD與直線x+y+2=0的斜率相同,即$θ=\frac{3π}{4}$,
故D點的直角坐標為(-1,1),
極坐標為$({\sqrt{2},\frac{3π}{4}})$;
(2)直線l:y=k(x-2)+2與半圓x2+y2=2(y≥0)相切時,$\frac{{|{2k-2}|}}{{\sqrt{1+{k^2}}}}=\sqrt{2}$,
∴k2-4k+1=0,
∴$k=2-\sqrt{3},k=2+\sqrt{3}$(舍去),
設點$B({-\sqrt{2},0})$,則${k_{AB}}=\frac{2-0}{{2+\sqrt{2}}}=2-\sqrt{2}$,
故直線l的斜率的取值范圍為$({2-\sqrt{3},2-\sqrt{2}}]$.

點評 本題考查的知識點是參數(shù)方程與普通方程的互化,極坐標方程與平面直角坐標方程的互化,直線與圓的位置關系,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計,得到如圖所示的頻率分布直方圖,已知高一年級共有學生600名,據(jù)此估計,該模塊測試成績不少于60分的學生人數(shù)為(  )
A.588B.480C.450D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則滿足f[f(a)]=2f(a)的a的取值范圍是( 。
A.[$\frac{2}{3}$,1]B.[0,1]C.[$\frac{2}{3}$,+∞)D.[1,+∞]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設遞增的等比數(shù)列{an}的前n項和為Sn,已知2(an+an+2)=5an+1,且$a_5^2={a_{10}}$,
(1)求數(shù)列{an}通項公式及前n項和為Sn;
(2)設${b_n}={S_n}•{log_2}{a_{n+1}}({n∈{N^*}})$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若函數(shù)f(x)=sin2x向右平移$\frac{π}{6}$個單位后,得到y(tǒng)=g(x),則關于y=g(x)的說法正確的是(  )
A.圖象關于點$({-\frac{π}{6},0})$中心對稱B.圖象關于$x=-\frac{π}{6}$軸對稱
C.在區(qū)間$[{-\frac{5π}{12},-\frac{π}{6}}]$單調遞增D.在$[{-\frac{π}{12},\frac{5π}{12}}]$單調遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某校從參加高二年級學業(yè)水平測試的學生中抽出80名學生,其數(shù)學成績(均為整數(shù))的頻率分布直方圖如圖,估計這次測試中數(shù)學成績的平均分、眾數(shù)、中位數(shù)分別是(  )
A.73.3,75,72B.72,75,73.3C.75,72,73.3D.75,73.3,72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE,AC,BD交于G點
(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C-BGF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x)=f(x+4),當x∈(-2,0)時,f(x)=2x,則f(2016)-f(2015)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,
(1)求f(-1)的值;
(2)求f(x)在x∈[2,4]上的最大值與最小值;
(3)判斷f(x)在[2,+∞)上的單調性.

查看答案和解析>>

同步練習冊答案