2.設(shè)F1,F(xiàn)2為雙曲線$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點,P為Γ上一點,PF2與x軸垂直,直線PF1的斜率為$\frac{3}{4}$,則雙曲線Γ的漸近線方程為( 。
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\sqrt{3}x$D.y=±2x

分析 求出PF2,則$\frac{P{F}_{2}}{{F}_{1}{F}_{2}}$=$\frac{3}{4}$,化簡整理即可得出a,b的關(guān)系,得出漸近線方程.

解答 解:把x=c代入$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$得y=±$\frac{^{2}}{a}$,
∴PF2=$\frac{^{2}}{a}$,
∵直線PF1的斜率為$\frac{3}{4}$,
∴$\frac{P{F}_{2}}{{F}_{1}{F}_{2}}$=$\frac{^{2}}{2ac}$=$\frac{3}{4}$,
∴$\frac{{c}^{2}-{a}^{2}}{ac}=\frac{3}{2}$,即2c2-2a2-3ac=0,
∴2e2-3e-2=0,∴e=2或e=-$\frac{1}{2}$(舍).
∴$\frac{\sqrt{{a}^{2}+^{2}}}{a}$=2,即$\frac{{a}^{2}+^{2}}{{a}^{2}}=4$,∴b=$\sqrt{3}$a,
∴雙曲線的漸近線方程為y=±$\sqrt{3}$x.
故選:C.

點評 本題考查了雙曲線的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+2y-5≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,則z=(x-1)2+(y+1)2的最小值為(  )
A.$\frac{53}{4}$B.10C.$\frac{36}{5}$D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)向量$\overrightarrow{a}$=(4sin$\frac{ω}{2}$x,1),$\overrightarrow$=($\frac{1}{2}$cos$\frac{ω}{2}$x,-1)(ω>0),若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+1在區(qū)間[-$\frac{π}{5}$,$\frac{π}{4}$]上單調(diào)遞增,則實數(shù)ω的取值范圍為(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)常數(shù)λ>0,a>0,f(x)=$\frac{{x}^{2}}{λ+x}$-alnx
(1)若f(x)在x=λ處取得極小值為0,求λ和a的值;
(2)對于任意給定的正實數(shù)λ、a,證明:存在實數(shù)x0,當x>x0時,f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知F1,F(xiàn)2為橢圓C的兩個焦點,P為C上一點,若|PF1|,|F1F2|,|PF2|成等差數(shù)列,則C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知F1,F(xiàn)2是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點,點P在橢圓C上,線段PF2與圓x2+y2=b2相切于點Q,且點Q為線段PF2的中點,則$\frac{{{a^2}+{e^2}}}$(其中e為橢圓C的離心率)的最小值為( 。
A.$\sqrt{6}$B.$\frac{{3\sqrt{6}}}{4}$C.$\sqrt{5}$D.$\frac{{3\sqrt{5}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|2x-a|+|2x-1|,a∈R.
(I)當a=3時,求關(guān)于x的不等式f(x)≤6的解集;
(II)當x∈R時,f(x)≥a2-a-13,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.執(zhí)行如圖所示的偽代碼,若輸出的y值為1,則輸入x的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2.
(1)求A1到平面AB1D距離;
(2)求D到平面A1BD1距離.

查看答案和解析>>

同步練習(xí)冊答案