3.已知函數(shù)f(x)=x3-12x,若f(x)在區(qū)間(2m,m+1)上單調(diào)遞減,則實(shí)數(shù)m的取值范圍是( 。
A.[-1,1]B.(-1,1]C.(-1,1)D.[-1,1)

分析 由函數(shù)f(x)=x3-12x在(2m,m+1)內(nèi)單調(diào)遞減轉(zhuǎn)化成f′(x)≤0在(2m,m+1)內(nèi)恒成立,得到關(guān)于m的關(guān)系式,即可求出m的范圍.

解答 解:∵函數(shù)f(x)=x3-12x在(2m,m+1)上單調(diào)遞減,
∴f'(x)=3x2-12≤0在(2m,m+1)上恒成立.
故  $\left\{\begin{array}{l}{f′(2m)≤0}\\{f′(m+1)≤0}\\{2m<m+1}\end{array}\right.$,即 $\left\{\begin{array}{l}{{8m}^{3}-24m≤0}\\{{(m+1)}^{3}-12(m+1)≤0}\\{2m<m+1}\end{array}\right.$成立.
解得:-1≤m<1,
故選:D.

點(diǎn)評(píng) 此題主要考查利用導(dǎo)函數(shù)的正負(fù)判斷原函數(shù)的單調(diào)性,考查函數(shù)的恒成立,轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將數(shù)30012(4)轉(zhuǎn)化為十進(jìn)制數(shù)為( 。
A.524B.260C.256D.774

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如果數(shù)列{an}的前n項(xiàng)之和為Sn=3+2n,那么a12+a22+a32+…+an2=$\frac{{4}^{n}+71}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合A={x|mx2-2x+1=0}中只有一個(gè)元素,則實(shí)數(shù)m的值為( 。
A.0B.1C.2D.0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.雙曲線$\frac{y^2}{16}-\frac{x^2}{9}=1$的焦點(diǎn)是(0,5),(0,-5);離心率為$\frac{5}{4}$;漸近線為y=$±\frac{4}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=$\frac{π}{6}$.
(Ⅰ)求φ;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,且PA=2,PB=$\sqrt{3}$,PC=3,則這個(gè)三棱錐的外接球的表面積為( 。
A.16πB.32πC.36πD.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)$z=\frac{4}{1+i}$(i是虛數(shù)單位)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)是( 。
A.(2,-2)B.(2,2)C.(-2,-2)D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.我校高二同學(xué)利用暑假進(jìn)行了社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組 數(shù)分 組低碳族的人數(shù)占本組的頻率
第一組[25,30)1200.6
第二組[30,35)195p
第三組[35,40)1000.5
第四組[40,45)a0.4
第五組[45,50)300.3
第六組[50,55]150.3
(1)請(qǐng)你補(bǔ)全頻率分布直方圖,并求出n,a,p的值;
(2)請(qǐng)你利用頻率分布直方圖估計(jì)本次調(diào)查人群的年齡的中位數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案