分析 (Ⅰ)由正弦函數(shù)圖象在對稱軸取得最值,結(jié)合φ的范圍,即可求出φ的值;
(Ⅱ)根據(jù)正弦函數(shù)的單調(diào)區(qū)間,求出f(x)的單調(diào)增區(qū)間即可.
解答 解:(Ⅰ)由函數(shù)f(x)=sin(2x+φ),
且y=f(x)圖象的一條對稱軸是直線x=$\frac{π}{6}$;
∴$\frac{π}{3}$+φ=$\frac{π}{2}$+kπ,k∈Z,
解得φ=$\frac{π}{6}$+kπ,k∈Z,
又-π<φ<0,
∴φ=-$\frac{5π}{6}$;
(Ⅱ)由函數(shù)f(x)=sin(2x-$\frac{5π}{6}$),
令-$\frac{π}{2}$+2kπ≤2x-$\frac{5π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得$\frac{π}{3}$+2kπ≤2x≤$\frac{4π}{3}$+2kπ,k∈Z,
即$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z;
∴函數(shù)y=f(x)的單調(diào)增區(qū)間為[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.
點評 本題考查了正弦型函數(shù)的對稱性與單調(diào)性的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x=1,則x2+x-2=0”的否命題是假命題 | |
B. | 命題“存在一個實數(shù)x,使不等式x2-3x+4<0成立”為真命題 | |
C. | 命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0” | |
D. | 過點(0,2)與拋物線y2=8x只有一個公共點的直線有3條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-1,1] | C. | (-1,1) | D. | [-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 6π | C. | $3\sqrt{5}π$ | D. | $6\sqrt{5}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $\frac{2}{3}\sqrt{3}$ | C. | $\frac{4}{3}\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x+1 | B. | y=x3 | C. | y=3•2x | D. | y=3-x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com