精英家教網 > 高中數學 > 題目詳情

【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調查,得到的統(tǒng)計數據如表所示:

積極參加班級工作

不積極參加班級工作

合計

學習積極性高

18

7

25

學習積極性不高

6

19

25

合計

24

26

50

如果隨機調查這個班的一名學生,求事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率;

若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現從中抽取兩名學生參加某項活動,請用字母代表不同的學生列舉出抽取的所有可能結果;

的條件下,求事件B:兩名學生中恰有1名男生的概率.

【答案】(1) (2)見解析;(3)

【解析】

名學生中,不積極參加班級工作且學習積極性不高的學生有19人,由此能求出事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率

不積極參加班級工作且學習積極性高的7名學生中有兩名男生,設為A,B,另外五名女生設為a,b,c,d,e,現從中抽取兩名學生參加某項活動,能用字母代表不同的學生列舉出抽取的所有可能結果.

事件B:兩名學生中恰有1名男生,則事件B包含的基本事件有10種,由此能求出事件B:兩名學生中恰有1名男生的概率

名學生中,不積極參加班級工作且學習積極性不高的學生有19人,

事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率

不積極參加班級工作且學習積極性高的7名學生中有兩名男生,設為A,B,另外五名女生設為a,b,c,d,e,

現從中抽取兩名學生參加某項活動,

用字母代表不同的學生列舉出抽取的所有可能結果有21種,分別為:

AB,Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,ab,ac,ad,ae,bc,bd,be,cd,ce,de.

事件B:兩名學生中恰有1名男生,

則事件B包含的基本事件有10種,分別為:

Aa,Ab,Ac,Ad,Ae,Ba,Bb,Bc,Bd,Be,

事件B:兩名學生中恰有1名男生的概率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知,則f0+f1+f2+f3++f2019=( 。

A. 0B. 505C. 1010D. 2020

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】把半橢圓與圓弧合成的曲線稱作曲圓,其中F為半橢圓的右焦點,A是圓弧x軸的交點,過點F的直線交曲圓P,Q兩點,則的周長取值范圍為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點E(﹣40)和F4,0),過點E的直線l與過點F的直線m相交于點M,設直線l的斜率為k1,直線m的斜率為k2,如果k1k2

1)記點M形成的軌跡為曲線C,求曲線C的軌跡方程.

2)已知P2m)、Q2,﹣m)(m0)是曲線C上的兩點,A,B是曲線C上位于直線PQ兩側的動點,當A,B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】哈師大附中高三學年統(tǒng)計甲、乙兩個班級一模數學分數(滿分150分),每個班級20名同學,現有甲、乙兩位同學的20次成績如下列莖葉圖所示:

(I)根據基葉圖求甲、乙兩位同學成績的中位數,并將乙同學的成績的頻率分布直方圖填充完整;

(Ⅱ)根據基葉圖比較甲乙兩位同學數學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結論即可)

(Ⅲ)現從甲乙兩位同學的不低于140分的成績中任意選出2個成績,設事件為“其中2 個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知點在圓柱的底面圓上,為圓的直徑.

(1)若圓柱的體積,,,求異面直線所成的角(用反三角函數值表示結果);

(2)若圓柱的軸截面是邊長為2的正方形,四面體的外接球為球,求兩點在球上的球面距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐的底面是等腰梯形,,,.

(Ⅰ)證明:平面平面

(Ⅱ)點是棱上一點,且平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區(qū)間;

(2)若函數恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學期的高一年級學生開始實行.為了適應新高考改革,某校組織了一次新高考質量測評,在成績統(tǒng)計分析中,高二某班的數學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據此解答如下問題:

1)求該班數學成績在的頻率及全班人數;

2)根據頻率分布直方圖估計該班這次測評的數學平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現從該班分數在分及其以上的試卷中任取份分析學生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

同步練習冊答案