橢圓G:的兩個焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓上的
一點(diǎn),且滿足
(Ⅰ)求離心率e的取值范圍;
(Ⅱ)當(dāng)離心率e取得最小值時,點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為求此時
橢圓G的方程;(ⅱ)設(shè)斜率為k(k≠0)的直線l與橢圓G相交于不同的兩點(diǎn)A、B,Q
為AB的中點(diǎn),問A、B兩點(diǎn)能否關(guān)于過點(diǎn)的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
解(I)設(shè)M(x0,y0)
①
又 ②
由②得代入①式整理得
又
解得
(Ⅱ)(i)當(dāng)
設(shè)H(x,y)為橢圓上一點(diǎn),則
若0
由(舍去)
若b≥3,當(dāng)y=-3時,|HN|2有最大值2b2+18
由2b2+18=50得b2=16
∴所求橢圓方程為
(ii)設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),則由
③
又直線PQ⊥直線l ∴直線PQ方程為
將點(diǎn)Q(x0,y0)代入上式得, ④
由③④得Q
(解1)而Q點(diǎn)必在橢圓內(nèi)部
由此得
故當(dāng)時A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對稱.
(解2)∴AB所在直線方程為
由得
顯然1+2k2≠0
而
直線l與橢圓有兩不同的交點(diǎn)A、B ∴△>0
解得
故當(dāng)時,A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對稱。
(ii)另解;設(shè)直線l的方程為y=kx+b
由得
設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),則
③
又直線PQ⊥直線l ∴直線PQ方程為
將點(diǎn)Q(x0,y0)代入上式得, ④
將③代入④⑤
∵x1,x2是(*)的兩根
⑥
⑤代入⑥得
∴當(dāng)時,A、B兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對稱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知AB為半圓的直徑,P為半圓上一點(diǎn),以A,B為焦點(diǎn),且過點(diǎn)P做橢圓,當(dāng)點(diǎn)P在半圓上移動時,橢圓的離心率有
A 最大值 B最小值 C最大值 D最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數(shù)字組成,則一天中任一時刻的四個數(shù)字之和為23的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查 了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為,,由此得到頻率分布直方圖如圖3,則這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在的人數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若直線與曲線有交點(diǎn),則 ( )
A.有最大值,最小值 B.有最大值,最小值
C.有最大值0,最小值 D.有最大值0,最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com