分析 (1)在三角形ABC中,利用余弦定理求出cos∠ACB的值,進而確定出∠ACB度數(shù),在三角形ACD中求出AD的長即可;
(2)設PA=m,PD=n,由題意求出∠APD度數(shù),在三角形APD中,利用余弦定理列出關(guān)系式,再利用基本不等式求出mn的范圍,進而確定出m2+n2的范圍,即可確定出所求式子范圍.
解答 解:(1)∵△ABC中,AC=2,BC=4,AB=2$\sqrt{7}$,且D是BC的中點,
∴由余弦定理得:cos∠ACB=$\frac{4+16-28}{2×2×4}$=-$\frac{1}{2}$,
∴∠ACB=$\frac{2π}{3}$,
又AC=CD=2,
∴AD=2×2×sin$\frac{π}{3}$=2$\sqrt{3}$;
(2)連接AP,PD,如圖所示,
設PA=m,PD=n,由題意:∠APD=$\frac{1}{2}$(2π-$\frac{2π}{3}$)=$\frac{2π}{3}$,
則在△APD中,m2+n2=12-mn,
又m2+n2≥2mn,
∴12-mn≥2mn,
解得:mn≤4,
又mn>0,
∴0<mn≤4,
則8≤m2+n2<12.
點評 此題考查了余弦定理,基本不等式的應用,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[\frac{1}{64},1]$ | B. | $[\frac{1}{8},1]$ | C. | $(\frac{1}{64},1)$ | D. | $(\frac{1}{8},1)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $\frac{16}{3}$ | C. | 7 | D. | $\frac{17}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{5}{6}$ | C. | $1-\frac{π}{6}$ | D. | $1-\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分條件 | |
B. | 已知命題p:?x∈R,使2x>3x;命題q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,則p∧(¬q)是真命題 | |
C. | 命題“若xy=0,則x=0或y=0”的否命題是“若xy≠0,則x≠0或y≠0” | |
D. | 從勻速傳遞的生產(chǎn)流水線上,質(zhì)檢員每隔5分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這是分成抽樣 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com