12.對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用符號?x>表示.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:
①a1=?a>; ②an+1=$\left\{\begin{array}{l}{<\frac{1}{{a}_{n}}>({a}_{n}≠0)}\\{0({a}_{n}=0)}\end{array}\right.$.
(Ⅰ)若a=$\sqrt{2}$時,數(shù)列{an}通項公式為an=$\sqrt{2}$-1;
(Ⅱ)當a>$\frac{1}{2}$時,對任意n∈N*都有an=a,則a的值為$\frac{\sqrt{5}-1}{2}$ 

分析 (I)根據<$\sqrt{2}$>的定義和$\sqrt{2}$的范圍依次計算a1,a2,a3,即可得出結論;
(II)根據定義可知$\frac{1}{2}<a<1$,依次計算a1,a2,列方程即可解出a的值.

解答 解:(I)∵1$<\sqrt{2}$<3,
∴a1=<$\sqrt{2}$>=$\sqrt{2}$-1,
∴$\frac{1}{{a}_{1}}$=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}+1$,
∵2$<\sqrt{2}+1<3$,
∴a2=<$\sqrt{2}+1$>=$\sqrt{2}+1-2$=$\sqrt{2}$-1,
同理可得:a3=a4=…=an=$\sqrt{2}-1$,
∴an=$\sqrt{2}$-1,
(II)∵a1=<a>=a,∴a<1,
又$a>\frac{1}{2}$,∴1$<\frac{1}{a}<2$,
∴a2=<$\frac{1}{{a}_{1}}$>=<$\frac{1}{a}$>=$\frac{1}{a}-1$,
∵a2=a,
∴$\frac{1}{a}-1=a$,解得a=$\frac{\sqrt{5}-1}{2}$.
故答案為(I)${a_n}=\sqrt{2}-1$,(II)$\frac{{\sqrt{5}-1}}{2}$.

點評 本題考查了對新定義的理解,數(shù)列的通項公式的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知平面上動點M到直線y=-2的距離比它到點F(0,1)的距離多1.
(Ⅰ)求動點M的軌跡方程;
(Ⅱ)設動點M形成的曲線為E,過點P(0,-1)的直線l交曲線E于A,B兩點,若直線OA和直線OB的斜率之和為2(其中O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知{an},{bn}為兩個數(shù)列,其中{an}是等差數(shù)列且前n項和為Sn又a3=6,a9=18.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足a1b1+a2b2+…+anbn=(2n-3)Sn,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知集合A={x|x2-2x-a2-2a<0},B={y|y=3x-2a,x<2}.
(1)若a=3,求A∪B;
(2)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.函數(shù)f(x)=Asin(ωx+φ),x∈R(0,ω>0,0<φ<$\frac{π}{2}$)的圖象與x軸的交點中,相鄰兩個交點之間的距離為$\frac{π}{2}$,且圖象上一個最低點為M($\frac{2π}{3}$,-2).
(1)求函數(shù)f(x)的解析式及單調增區(qū)間;
(2)求 當x∈[$\frac{π}{12}$,$\frac{π}{2}$]時,f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)$f(x)=sin(\frac{1}{4}x+\frac{π}{6})\;(x∈R)$,把函數(shù)f(x)的圖象向右平移$\frac{8π}{3}$個單位得函數(shù)g(x)的圖象,則下面結論正確的是(  )
A.函數(shù)g(x)是奇函數(shù)B.函數(shù)g(x)在區(qū)間[π,2π]上是增函數(shù)
C.函數(shù)g(x)的最小正周期是4πD.函數(shù)g(x)的圖象關于直線x=π對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐S-ABCD中,底面ABCD為平行四邊形,E是SA的上一點,當點E滿足條件SE=EA,時,SC∥平面EBD,寫出條件并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知命題p:?x∈(-2,2),|x-1|+|x+2|≥6,則下列敘述正確的是( 。
A.¬p為:?x∈(-2,2),|x-1|+|x+2|<6B.¬p為:?x∈(-2,2),|x-1|+|x+2|≥6
C.¬p為:?x∈(-∞,-2]∪[2,+∞),|x-1|+|x+2|<6D.¬p為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知定義在R上的函數(shù)f(x)存在零點,且對任意m,n∈R都滿足f[$\frac{m}{2}$f(m)+f(n)]=f2(m)+2n,則函數(shù)g(x)=|f[f(x)]-4|+log3x-1的零點個數(shù)為3.

查看答案和解析>>

同步練習冊答案