19.已知變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,則z=2${\;}^{x-\frac{y}{2}}$的最小值為${2}^{-\frac{3}{2}}$.

分析 畫(huà)出不等式組表示的平面區(qū)域,求出目標(biāo)$m=x-\frac{y}{2}$的最小值,即可求出z的最小值.

解答 解:畫(huà)不等式組$\left\{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域,如圖所示;

由題可知$z={2^{x-\frac{y}{2}}}$,
設(shè)$m=x-\frac{y}{2}$,
要使z最小,只需m最小即可,
當(dāng)經(jīng)過(guò)點(diǎn)B(0,3)時(shí),m最小為$-\frac{3}{2}$,
所以z的最小值為${2^{-\frac{3}{2}}}$.
故答案為:${2}^{-\frac{3}{2}}$.

點(diǎn)評(píng) 本題考查了線性規(guī)劃的基本應(yīng)用問(wèn)題,利用目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵,利用數(shù)形結(jié)合是解題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的通項(xiàng)公式是an=$\frac{9{n}^{2}-9n+2}{9{n}^{2}-1}$.
(1)判斷$\frac{98}{101}$是不是數(shù)列{an}中的一項(xiàng);
(2)試判斷數(shù)列{an}中的項(xiàng)是否都在區(qū)間(0,1)內(nèi);
(3)在區(qū)間($\frac{1}{3}$,$\frac{2}{3}$)內(nèi)有無(wú)數(shù)列{an}中的項(xiàng)?若有,是第幾項(xiàng)?若沒(méi)有.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.復(fù)數(shù)$z=\frac{2i}{1+i}$(其中i為虛數(shù)單位),化簡(jiǎn)后z=1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為(1,0),一個(gè)頂點(diǎn)為$(0,\sqrt{3})$,若在此橢圓上存在不同兩點(diǎn)關(guān)于直線y=2x+m對(duì)稱(chēng),則m的取值范圍是( 。
A.($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$)B.($-\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{13}}}{13}$)C.($-\frac{1}{2},\frac{1}{2}$)D.($-\frac{{\sqrt{15}}}{13},\frac{{\sqrt{15}}}{13}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知正實(shí)數(shù)m,n滿(mǎn)足$\frac{1}{m+n}$+$\frac{1}{m-n}$=1,則3m+2n的最小值為3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}(1-x),}&{x≤0}\\{f(x-1)-f(x-2),}&{x>0}\end{array}}\right.$,則f(3)=( 。
A.-3B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.記“點(diǎn)M(x,y)滿(mǎn)足x2+y2≤a(a>0)”為事件A,記“M(x,y)滿(mǎn)足$\left\{\begin{array}{l}{x-y+1≥0}\\{5x-2y-4≤0}\\{2x+y+2≥0}\end{array}\right.$”為事件B,若P(B|A)=1,則實(shí)數(shù)a的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)A(-$\sqrt{3}$,0)和點(diǎn)B($\sqrt{3}$,0),動(dòng)點(diǎn)M到A點(diǎn)的距離是4,線段MB的垂直平分線交線段MA于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線l過(guò)點(diǎn)D(1,0)且與橢圓交于E,F(xiàn)兩點(diǎn),求△OEF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.“m>0”是“復(fù)數(shù)z=m+$\frac{2}{-1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于第四象限”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案