A. | $\frac{7π}{4}$ | B. | 2π | C. | $\frac{9π}{4}$ | D. | 3π |
分析 設(shè)正△ABC的中心為O1,連結(jié)O1A.根據(jù)球的截面圓性質(zhì)、正三角形的性質(zhì)與勾股定理,而經(jīng)過點E的球O的截面,當(dāng)截面與OE垂直時截面圓的半徑最小,相應(yīng)地截面圓的面積有最小值,由此算出截面圓半徑的最小值,從而可得截面面積的最小值.
解答 解:設(shè)正△ABC的中心為O1,連結(jié)O1A,∵O1是正△ABC的中心,A、B、C三點都在球面上,
∴O1O⊥平面ABC,∵PA⊥面ABC,PA=2,∴球心O到平面ABC的距離為O1O=$\frac{1}{2}PA$=1,
∴Rt△O1OA中,O1A=$\sqrt{O{A}^{2}-O{{O}_{1}}^{2}}=\sqrt{3}$,∴又∵E為AB的中點,△ABC是等邊三角形,∴AE=AO1cos30°=$\frac{3}{2}$.
∵過E作球O的截面,當(dāng)截面與OE垂直時,截面圓的半徑最小,
∴當(dāng)截面與OE垂直時,截面圓的面積有最小值.
此時截面圓的半徑r=$\frac{3}{2}$,可得截面面積為S=πr2=$\frac{9π}{4}$,
故選:C.
點評 本題已知球的內(nèi)接正三角形與球心的距離,求經(jīng)過正三角形中點的最小截面圓的面積.著重考查了勾股定理、球的截面圓性質(zhì)與正三角形的性質(zhì)等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 6 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交但不垂直 | C. | 垂直 | D. | 相交于點(2,-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com