在區(qū)間(0,
π
2
)
上隨機取一個數(shù)x,則事件“tanx•cosx>
2
2
”發(fā)生的概率為( 。
A、
3
4
B、
2
3
C、
1
2
D、
1
3
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:先化簡不等式,確定滿足tanx•cosx>
2
2
且在區(qū)間(0,
π
2
)
內(nèi)x的范圍,根據(jù)幾何概型利用長度之比可得結(jié)論.
解答: 解:∵tanx•cosx>
2
2
,即sinx>
2
2
且cosx≠0,
∵x∈(0,
π
2
)
,∴x∈(
π
4
π
2

∴在區(qū)間(0,
π
2
)
上,滿足tanx•cosx>
2
2
發(fā)生的概率為P=
1
2

故選C.
點評:本題考查幾何概型,考查三角函數(shù)的化簡,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了弘揚孝道感恩的美德,某學(xué)校準備組織一批學(xué)生觀看親情勵志電影《孝女彩金》.現(xiàn)有10張《孝女彩金》的電影票分給6個班的學(xué)生去觀看,每個班至少分一張電影票,則不同的分法有( 。┓N.
A、60B、64
C、126D、253

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),且f(x)在(0,+∞)上為增函數(shù),f(xy)=f(x)+f(y),若f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個底面是直角梯形的四棱錐的三視圖如圖所示,則此四棱錐的四個側(cè)面的面積和為(  )
A、
5
2
2
+
3
2
B、3
2
+
3
C、3
2
+
3
2
D、
5
2
2
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個雙曲線
x2
a2
-
y2
b2
=1和
y2
b2
-
x2
a2
=1(a>0,b>0)的漸近線將第一象限三等分,則雙曲線
x2
a2
-
y2
b2
=1的離心率( 。
A、2或
3
B、
6
2
3
3
C、2或
2
3
3
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an=-n2+10n+11,則數(shù)列{an}從首項到第幾項的和最大(  )
A、第10項
B、第11項
C、第10項或11項
D、第12項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面的函數(shù)圖象與x軸均有交點,其中不能用二分法求函數(shù)零點的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義g(x)=f(x)-x的零點x0為f(x)的不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0)
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)對于任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)若函數(shù)g(x)有不變號零點,且b>1,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等比數(shù)列,下面結(jié)論中正確的是( 。
A、a1+a3≥2a2
B、a12+a32≥2a22
C、若a1=a3,則a1=a2
D、若a1<a3,則a2<a4

查看答案和解析>>

同步練習(xí)冊答案