18.已知x>2,求f(x)=x+$\frac{1}{x-2}$的最小值4.

分析 f(x)=x+$\frac{1}{x-2}$=x-2+$\frac{1}{x-2}$+2,利用基本不等式即可求出.

解答 解:∵x>2,
∴x-2>0,
∴f(x)=x+$\frac{1}{x-2}$=x-2+$\frac{1}{x-2}$+2≥2$\sqrt{(x-2)•\frac{1}{x-2}}$+2=4,當(dāng)且僅當(dāng)x=3時(shí)取等號(hào),
故f(x)=x+$\frac{1}{x-2}$的最小值為4,
故答案為:4

點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知雨數(shù)f(x)=x2-x,g(x)=a1nx(a∈R),h(x)=kx+b(k,b∈R).
(1)若函數(shù)F(x)=f(x)-g(x)在區(qū)間(0,1)上存在兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)設(shè)a=1,記[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù),如[1]=1,[1,2]=1,[-1,2]=-2,A={k|f(x)+x+1-h(x)][h(x)-2eg(x)]≥0對(duì)x>0恒成立.若k1,k2∈A,求[k2-k1]的最大值數(shù)據(jù)是2(數(shù)據(jù):ln2≈0.7.ln5=1.6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.f(x)是R上的以3為周期的奇函數(shù),且f(2)=0,則f(x)=0在[0,6]內(nèi)解的個(gè)數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x),若對(duì)于在定義域內(nèi)存在實(shí)數(shù)x滿足f(-x)=-f(x),則稱函數(shù)f(x)為“局部奇函數(shù)”.若函數(shù)f(x)=4x-m•2x+m2-3是定義在R上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是( 。
A.[1-$\sqrt{3}$,1+$\sqrt{3}$)B.[-1,2)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.[-2$\sqrt{2}$,1-$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)x∈R,且x≠0,若x+x-1=3,猜想${x^{2^n}}+{x^{-{2^n}}}(n∈{N^*})$的個(gè)位數(shù)字是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).若點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$)在函數(shù)y=f(2x+$\frac{π}{6}$)的圖象上,則φ的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)定義在R上的奇函數(shù)y=f(x),滿足對(duì)任意t∈R都有f(x)=f(1-x),且x∈(0,$\frac{1}{2}$]時(shí),f(x)=2x2,則$f(3)+f({-\frac{5}{2}})$的值等于-0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$\overrightarrow{AB}$=(3,1),向量$\overrightarrow{AC}$=(-4,-3),則向量$\overrightarrow{BC}$=( 。
A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}中,a1=1且an+1=an+2n+1,設(shè)數(shù)列{bn}滿足bn=an-1,對(duì)任意正整數(shù)n不等式$\frac{1}{b_2}+\frac{1}{b_2}+…+\frac{1}{b_n}<m$均成立,則實(shí)數(shù)m的取值范圍為[$\frac{3}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案