16.已知f(x)是偶函數(shù),且f(x+$\frac{1}{2}$)=f($\frac{1}{2}$-x),當-$\frac{1}{2}$≤x≤0時,f(x)=($\frac{1}{2}$)x-1,記an=f($\frac{n+1}{2}$),n∈N+,則a2046的值為( 。
A.1-$\sqrt{2}$B.1-$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$-1D.$\frac{\sqrt{2}}{2}$-1

分析 根據(jù)函數(shù)奇偶性和對稱性求出函數(shù)是周期為1的周期函數(shù),根據(jù)數(shù)列和函數(shù)的關系,結合函數(shù)的周期性進行轉化求解即可.

解答 解:∵f(x)是偶函數(shù),且f(x+$\frac{1}{2}$)=f($\frac{1}{2}$-x),
∴f(x+$\frac{1}{2}$)=f($\frac{1}{2}$-x)=f(x-$\frac{1}{2}$),
即f(x+1)=f(x),
即函數(shù)f(x)是周期為1的周期函數(shù),
則a2046=f($\frac{2046+1}{2}$)=f(1023+$\frac{1}{2}$)=f($\frac{1}{2}$)=f(-$\frac{1}{2}$),
∵當-$\frac{1}{2}$≤x≤0時,f(x)=($\frac{1}{2}$)x-1,
∴f(-$\frac{1}{2}$)=($\frac{1}{2}$)${\;}^{-\frac{1}{2}}$-1=${2}^{\frac{1}{2}}$-1=$\sqrt{2}$-1,
故a2046=f(-$\frac{1}{2}$)=$\sqrt{2}$-1,
故選:C

點評 本題主要考查函數(shù)與數(shù)列的綜合應用,根據(jù)條件求出函數(shù)f(x)是周期函數(shù),以及利用函數(shù)的周期性和奇偶性進行轉化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F2(1,0),點P(1,$\frac{{\sqrt{2}}}{2}$)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過坐標原點O的兩條直線EF,MN分別與橢圓C交于E,F(xiàn),M,N四點,且直線OE,OM的斜率之積為-$\frac{1}{2}$,求證:四邊形EMFN的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow$)($\overrightarrow{a}$-2$\overrightarrow$)=4.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)求|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下面三個類比推理:
①實數(shù)m、n,有(m+n)2=m2+2mn+n2;類比向量有($\overrightarrow a$+$\overrightarrow b$)2=${\overrightarrow a$2+2$\overrightarrow a$•$\overrightarrow$+${\overrightarrow b$2
②實數(shù)m、n,若m2+n2=0,則m=n=0;類比復數(shù)z1、z2,若z12+z22=0,則z1=z2=0
③向量$\overrightarrow a$,有|$\overrightarrow a$|2=${\overrightarrow a$2;類比復數(shù)z,有|z|2=z2
類比所得到的命題中,真命題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,橢圓$\frac{x^2}{a^2$+$\frac{y^2}{b^2}$=1(a>b>0)與x軸、y軸的正半軸相交于A、B,過橢圓上一點P作x軸的垂線,垂足恰為左焦點F1,OP∥AB.
(Ⅰ)求橢圓的離心率;
(Ⅱ)線段PB的垂直平分線與y軸相交于C,若$\overrightarrow{OC}$=λ$\overrightarrow{OB}$,求λ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知偶函數(shù)f(x)在區(qū)間[0,+∞)內(nèi)單調(diào)遞減,f(2)=0.若f(x-1)>0,則x的取值范圍是( 。
A.(-2,2)B.(-1,2)C.(2,+∞)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知P為三角形△ABC所在平面上一點,滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PC}$•$\overrightarrow{PB}$=$\overrightarrow{PA}$•$\overrightarrow{PC}$,則P點是△ABC的垂心(填:“外心”、“內(nèi)心”、“重心”或“垂心”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.當x<0時,f(x)=-x-$\frac{2}{x}$的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.要證明不等式$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$,可選擇的方法有( 。
A.分析法B.綜合法
C.反證法D.以上三種方法均可

查看答案和解析>>

同步練習冊答案