解析:由題意知
當-2≤x≤1時,f(x)=x-2,
當1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數(shù),
∴f(x)的最大值為f(2)=23-2=6.
答案:C
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(天津卷解析版) 題型:解答題
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(湖南卷解析版) 題型:解答題
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調遞減;當時單調遞增,故當時,取最小值
于是對一切恒成立,當且僅當. 、
令則
當時,單調遞增;當時,單調遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調遞減;當時,單調遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高考模擬預測數(shù)學文試卷(解析版) 題型:解答題
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足(O為坐標原點),當< 時,求實數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題理科數(shù)學試卷(解析版) 題型:解答題
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數(shù)m的取值范圍.[
【解析】第一問中因為直線經過點(,0),所以=,得.又因為m>1,所以,故直線的方程為
第二問中設,由,消去x,得,
則由,知<8,且有
由題意知O為的中點.由可知從而,設M是GH的中點,則M().
由題意可知,2|MO|<|GH|,得到范圍
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com