6.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值為( 。
A.-1B.1C.3D.7

分析 由約束條件畫出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:畫出不等式組件$\left\{\begin{array}{l}x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,表示的可行域,由圖可知,
當(dāng)直線y=$\frac{1}{2}$x-$\frac{z}{2}$,過A點(diǎn)(3,1)時(shí),直線在y軸上的截距最大,z有最小值為3-2×1=1.
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(mx-1)ex-x2
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為e-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)<-x2+mx-m有且僅有兩個(gè)整數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)tanα=3,則$\frac{sin(α-π)+cos(π-α)}{sin(\frac{π}{2}-α)+cos(\frac{π}{2}+α)}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在多面體ABCDE中,DB⊥平面ABC,AE⊥平面ABC,且△ABC是的邊長(zhǎng)為4的等邊三角形,AE=2,CD與平面ABDE所成角的余弦值為$\frac{\sqrt{10}}{4}$,F(xiàn)是線段CD上一點(diǎn).
(Ⅰ)若F是線段CD的中點(diǎn),證明:平面CDE⊥面DBC;
(Ⅱ)求二面角B-EC-D的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.以40km/h向北偏東30°航行的科學(xué)探測(cè)船上釋放了一個(gè)探測(cè)氣球,氣球順風(fēng)向正東飄去,3min后氣球上升到1km處,從探測(cè)船上觀察氣球,仰角為30°,求氣球的水平飄移速度是20km/h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.(1-2x)(1-x)5的展開式中x3的系數(shù)為( 。
A.10B.-10C.-20D.-30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.連續(xù)擲兩次骰子,以先后得到的點(diǎn)數(shù)m,n為點(diǎn)P的坐標(biāo)(m,n),那么點(diǎn)P在圓x2+y2=17內(nèi)部(不包括邊界)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{5}{18}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)寫出直線l的普通方程以及曲線C的極坐標(biāo)方程;
(2)若直線l與曲線C的兩個(gè)交點(diǎn)分別為M,N,直線l與x軸的交點(diǎn)為P,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若x>-1,則函數(shù)$y=x+\frac{1}{x+1}$取最小值時(shí)對(duì)應(yīng)的x的值為0.

查看答案和解析>>

同步練習(xí)冊(cè)答案