【題目】(Ⅰ)求證:當(dāng)a>2時(shí), + <2 ; (Ⅱ)證明:2, ,5不可能是同一個(gè)等差數(shù)列中的三項(xiàng).
【答案】解:(Ⅰ)∵( + )2=2a+2 , >0, >0且a+2≠a﹣2, ∴ ,
∴ + <2
(Ⅱ)假設(shè) 是同一個(gè)等差數(shù)列中的三項(xiàng),分別設(shè)為am , an , ap ,
則 為無(wú)理數(shù),又 為有理數(shù),矛盾.
所以,假設(shè)不成立,即 不可能是同一個(gè)等差數(shù)列中的三項(xiàng).
【解析】(Ⅰ)利用綜合法證明即可;(Ⅱ)利用反證法證明,假設(shè) 是同一個(gè)等差數(shù)列中的三項(xiàng),分別設(shè)為am , an , ap , 推出 為無(wú)理數(shù),又 為有理數(shù),矛盾,即可證明不可能是等差數(shù)列中的三項(xiàng).
【考點(diǎn)精析】掌握反證法與放縮法是解答本題的根本,需要知道常見(jiàn)不等式的放縮方法:①舍去或加上一些項(xiàng)②將分子或分母放大(縮小).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年7月16日,中國(guó)互聯(lián)網(wǎng)絡(luò)信息中心發(fā)布《第三十四次中國(guó)互聯(lián)網(wǎng)發(fā)展?fàn)顩r報(bào)告》,報(bào)告顯示:我國(guó)網(wǎng)絡(luò)購(gòu)物用戶已達(dá)億.為了了解網(wǎng)購(gòu)者一次性購(gòu)物金額情況,某統(tǒng)計(jì)部門(mén)隨機(jī)抽查了6月1日這一天100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表.已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為.
(Ⅰ)確定, , , 的值;
(Ⅱ)為進(jìn)一步了解網(wǎng)購(gòu)金額的多少是否與網(wǎng)齡有關(guān),對(duì)這100名網(wǎng)購(gòu)者調(diào)查顯示:購(gòu)物金額在2000元以上的網(wǎng)購(gòu)者中網(wǎng)齡3年以上的有35人,購(gòu)物金額在2000元以下(含2000元)的網(wǎng)購(gòu)者中網(wǎng)齡不足3年的有20人.
①請(qǐng)將列聯(lián)表補(bǔ)充完整;
網(wǎng)齡3年以上 | 網(wǎng)齡不足3年 | 合計(jì) | |
購(gòu)物金額在2000元以上 | 35 | ||
購(gòu)物金額在2000元以下 | 20 | ||
合計(jì) | 100 |
②并據(jù)此列聯(lián)表判斷,是否有%的把握認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在三年以上有關(guān)?
參考數(shù)據(jù):
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上, 函數(shù)的圖象恒在直線下方, 求的取值范圍;
(3)設(shè).當(dāng)時(shí), 若對(duì)于任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人投籃命中的概率為別為 與 ,各自相互獨(dú)立,現(xiàn)兩人做投籃游戲,共比賽3局,每局每人各投一球.
(1)求比賽結(jié)束后甲的進(jìn)球數(shù)比乙的進(jìn)球數(shù)多1個(gè)的概率;
(2)設(shè)ξ表示比賽結(jié)束后,甲、乙兩人進(jìn)球數(shù)的差的絕對(duì)值,求ξ的概率分布和數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓(),原點(diǎn)到直線的距離為,其中:點(diǎn),點(diǎn).
(1)求該橢圓的離心率;
(2)經(jīng)過(guò)橢圓右焦點(diǎn)的直線和該橢圓交于兩點(diǎn),點(diǎn)在橢圓上, 為原點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體中,為邊長(zhǎng)為的正方形,為直角梯形,,,,,.
(1)求異面直線和所成角的大小;
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 , 的夾角為120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個(gè)半圓,固定點(diǎn)E為CD的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
(1)當(dāng)MN和AB之間的距離為1米時(shí),求此時(shí)三角通風(fēng)窗EMN的通風(fēng)面積;
(2)設(shè)MN與AB之間的距離為x米,試將三角通風(fēng)窗EMN的通風(fēng)面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
(3)當(dāng)MN與AB之間的距離為多少米時(shí),三角通風(fēng)窗EMN的通風(fēng)面積最大?并求出這個(gè)最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com