10.用量詞符號(hào)“?”或“?”表示下列命題:
(1)不論m取何實(shí)數(shù),方程x2+x-m=0必有實(shí)數(shù)根:?m∈R,方程x2+x-m=0必有實(shí)數(shù)根;
(2)存在一個(gè)有理數(shù)x0,使得x02=8:?x0∈Q,使得x02=8.

分析 由已知可得(1)為全稱命題,(2)為特稱命題,用量詞表示,可得答案.

解答 解:(1)不論m取何實(shí)數(shù),方程x2+x-m=0必有實(shí)數(shù)根可表示為:?m∈R,方程x2+x-m=0必有實(shí)數(shù)根;
(2)存在一個(gè)有理數(shù)x0,使得x02=8可表示為:?x0∈Q,使得x02=8;
故答案為:?m∈R,方程x2+x-m=0必有實(shí)數(shù)根;?x0∈Q,使得x02=8

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是全稱命題和特稱命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$sin({π-α})=\frac{{\sqrt{5}}}{5}$,則sin4α-cos4α為( 。
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,且(2c-a)cosB=bcosA.
(Ⅰ)求B;
(Ⅱ)若BC=6,AC邊上的中線BD的長(zhǎng)為7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$y=sin(\frac{π}{6}-x)$的圖象向左平移m個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則m的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)log23=a,log37=b,則log4256可以用a、b表示為$\frac{ab+3}{1+a+ab}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合M={x|x2-x-2<0},P={x|x≤a},若M∩P=∅,則實(shí)數(shù)a的取值范圍是(  )
A.{a|a<-1}B.{a|a≥2}C.{a|-1<a<2}D.{a|a≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overrightarrow a=(sinx,cos2x),\overrightarrow b=(2\sqrt{3}cosx,-1)$.
(Ⅰ)若$\overrightarrow a⊥\overrightarrow b$,求tan2x的值;
(Ⅱ)求$f(x)=\overrightarrow a•\overrightarrow b$的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.學(xué)校為了解高二年級(jí)l203名學(xué)生對(duì)某項(xiàng)教改試驗(yàn)的意見(jiàn),打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)f(x)=($\frac{1}{2}$)x-x+1,若在用二分法求f(x)在(1,3)內(nèi)的零點(diǎn)近似值時(shí),依次求得f(1)>0,f(3)<0,f(2)<0,f(1.5)<0,則可以判斷零點(diǎn)位于區(qū)間(  )
A.(2.5,3)B.(2,2.5)C.(1,1.5)D.(1.5,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案