12.直線$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.(t$為參數(shù))與圓$\left\{\begin{array}{l}x=4+2cosφ\\ y=2sinφ\end{array}\right.(φ$為參數(shù))相切,則此直線的傾斜角$α({α>\frac{π}{2}})$等于( 。
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{6}$

分析 將直線方程及圓的參數(shù)方程轉(zhuǎn)化成普通方程,利用點到直線的距離公式,即可求得|sinα|=$\frac{1}{2}$,由$\frac{π}{2}<$α<π,即可求得α的值.

解答 解:直線與圓的普通方程分別是y=tanα•x,(x-4)2+y2=4,則圓心為(4,0),半徑為2,
由直線與圓相切知,
d=$\frac{丨4tanα-0丨}{\sqrt{1+ta{n}^{2}α}}$=2
|sinα|=$\frac{1}{2}$,
因$\frac{π}{2}<$α<π,
∴α=$\frac{5π}{6}$,
故選A.

點評 本題考查圓與直線的參數(shù)方程,點到直線的距離公式,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線$\frac{\sqrt{3}}{3}$x-y=0的極坐標(biāo)方程(限定ρ≥0)是(  )
A.θ=$\frac{π}{6}$B.θ=$\frac{7}{6}$πC.θ=$\frac{π}{6}$和θ=$\frac{7}{6}$πD.θ=$\frac{5}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從1,2,3,4,5這五個數(shù)中一次隨機取兩個數(shù),則取出的兩個數(shù)的和為奇數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M={x|x2+x-2<0},N={x|x+1<0},則M∩N=( 。
A.(-1,1)B.(-2,-1)C.(-2,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知兩點A(-m,0)和B(2+m,0)(m>0),若在直線l:x+$\sqrt{3}$y-9=0上存在點P,使得PA⊥PB,則實數(shù)m的取值范圍是( 。
A.(0,3)B.(0,4)C.[3,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知隨機變量X服從正態(tài)分布N(3,1),且P(X≥4)=0.1587,則P(2<X<4)=(  )
A.0.6826B.0.3413C.0.4603D.0.9207

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C頂點在原點,焦點在y軸上,拋物線C上一點Q(a,2)到焦點的距離為3,線段AB的兩端點A(x1,y1)、B(x2,y2)在拋物線C上.
(1)求拋物線C的方程;
(2)若y軸上存在一點M(0,m)(m>0),使線段AB經(jīng)過點M時,以AB為直徑的圓經(jīng)過原點,求m的值;
(3)在拋物線C上存在點D(x3,y3),滿足x3<x1<x2,若△ABD是以角A為直角的等腰直角三角形,求△ABD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某青少年成長關(guān)愛機構(gòu)為了調(diào)研所在地區(qū)青少年的年齡與身高壯況,隨機抽取6歲,9歲,12歲,15歲,18歲的青少年身高數(shù)據(jù)各1000個,根據(jù)各年齡段平均身高作出如圖所示的散點圖和回歸直線L.根據(jù)圖中數(shù)據(jù),下列對該樣本描述錯誤的是( 。
A.據(jù)樣本數(shù)據(jù)估計,該地區(qū)青少年身高與年齡成正相關(guān)
B.所抽取數(shù)據(jù)中,5000名青少年平均身高約為145cm
C.直線L的斜率的值近似等于樣本中青少年平均身高每年的增量
D.從這5種年齡的青少年中各取一人的身高數(shù)據(jù),由這5人的平均年齡和平均身高數(shù)據(jù)作出的點一定在直線L上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=1+3x-x3有( 。
A.極小值-1,極大值1B.極小值-1,極大值3
C.極小值-2,極大值2D.極小值2,極大值3

查看答案和解析>>

同步練習(xí)冊答案