16.若正實數(shù)a,b滿足(2a+b)2=1+6ab,則$\frac{ab}{2a+b+1}$的最大值為$\frac{1}{6}$.

分析 正實數(shù)a,b滿足(2a+b)2=1+6ab,可得ab=$\frac{(2a+b)^{2}-1}{6}$,由(2a+b)2=1+6ab≤1+$3×(\frac{2a+b}{2})^{2}$,解得2a+b≤2.于是$\frac{ab}{2a+b+1}$=$\frac{(2a+b)^{2}-1}{6(2a+b)+6}$=$\frac{2a+b-1}{6}$,即可得出.

解答 解:∵正實數(shù)a,b滿足(2a+b)2=1+6ab,
∴ab=$\frac{(2a+b)^{2}-1}{6}$.
∵(2a+b)2=1+6ab≤1+$3×(\frac{2a+b}{2})^{2}$,
解得2a+b≤2.當(dāng)且僅當(dāng)b=2a=1取等號.
則$\frac{ab}{2a+b+1}$=$\frac{(2a+b)^{2}-1}{6(2a+b)+6}$=$\frac{2a+b-1}{6}$≤$\frac{2-1}{6}$=$\frac{1}{6}$,
∴$\frac{ab}{2a+b+1}$的最大值為$\frac{1}{6}$.
故答案為:$\frac{1}{6}$.

點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是某幾何體的三視圖且a=b,則該幾何體主視圖的面積為(  )
A.$\sqrt{6}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=2x+x-4的零點x0∈(a,b),且b-a=1,a,b∈N,則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知曲線C1:y2=tx(y>0,t>0)在點M($\frac{4}{t}$,2)處的切線與曲線C2:y=ex+1-1也相切,則tln$\frac{4{e}^{2}}{t}$的值為( 。
A.4e2B.8eC.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(x-2)|x+a|(a∈R)
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[-2,2]時,函數(shù)f(x)的最大值為g(a),求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=|asinx+bcosx-1|+|bsinx-acosx|(a,b∈R)的最大值為11,則a2+b2=50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下列4個命題:
(1)若xy=1,則x,y互為倒數(shù)的逆命題;
(2)面積相等的三角形全等的否命題;
(3)若m≤1,則x2-2x+m=0有實數(shù)解的逆否命題;
(4)若xy=0,則x=0或y=0的否定.
其中真命題(1)(2)(3)(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)U=R,M={y|y=2x+1,-$\frac{1}{2}$≤x≤$\frac{1}{2}$},N={x|y=lg(x2+3x)},則(∁UM)∩N=( 。
A.(-∞,-3]∪(2,+∞)B.(-∞,-3)∪(0,+∞)C.(-∞,-3)∪(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$,是任意的非零平面向量,且相互不共線,則下列正確的是( 。
A.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$,$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$
B.|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.|$\overrightarrow{a}$•$\overrightarrow$|≥|$\overrightarrow{a}$||$\overrightarrow$|
D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

同步練習(xí)冊答案