15.6名同學(xué)站成一排照畢業(yè)相,要求甲不站在兩側(cè),而且乙和丙相鄰、丁和戊相鄰,則不同的站法種數(shù)為( 。
A.60B.96C.48D.72

分析 根據(jù)題意,分3步進(jìn)行分析,①、因?yàn)橐液捅噜,用捆綁法分析可得其情況數(shù)目,②、丁和戊相鄰,同理可得情況數(shù)目,③、將這兩個(gè)整體與剩下的2人排列,因?yàn)榧撞徽驹趦蓚?cè),則甲有2個(gè)位置可選,分析可得其情況數(shù)目,進(jìn)而由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,分3步進(jìn)行分析,
①、因?yàn)橐液捅噜,將其看成一個(gè)整體,考慮兩人的順序,有A22=2種情況,
②、同理,丁和戊相鄰,也有2種情況,
③、將這兩個(gè)整體與剩下的2人排列,因?yàn)榧撞徽驹趦蓚?cè),則甲有2個(gè)位置可選,則共有2×A33=12種情況,
則不同的站法種數(shù)為2×2×12=48種;
故選:C.

點(diǎn)評(píng) 本題考查排列、組合的運(yùn)用,因?yàn)樯婕暗南拗茥l件比較多,所以注意認(rèn)真分析題意,認(rèn)清問題是排列還是組合問題,還要注意相鄰問題需要用捆綁法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|1-a≤x≤a+1},B={x|x2-3x-4≥0},若A∩B=∅,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-1)B.(-∞,2)C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如表:
所用的時(shí)間(天數(shù))10111213
通過公路l的頻數(shù)20402020
通過公路2的頻數(shù)10404010
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)(將頻率視為概率).
(I)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過公路l、公路2的“一次性費(fèi)用”分別為3.2萬元、1.6萬元(其他費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到;每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,生產(chǎn)商將支付給銷售商2萬元.如果汽車A,B按(I)中所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,平面上有四個(gè)點(diǎn)A、B、P、Q,其中A、B為定點(diǎn),且AB=$\sqrt{3}$,P、Q為動(dòng)點(diǎn),滿足AP=PQ=QB=1,又△APB和△PQB的面積分別為S和T,則S2+T2的最大值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示正方形O'A'B'C'的邊長為2cm,它是一個(gè)水平放置的一個(gè)平面圖形的直觀圖,則原圖形的面積是4$\sqrt{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.組數(shù)據(jù)2,x,4,6,10的平均值是5,則此組數(shù)據(jù)的方差是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知A={x|x2+3x-10≤0},B={x|m+1≤x≤2m-1},B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A是由0,m,m2-3m+2三個(gè)元素組成的集合,且2∈A,則實(shí)數(shù)m的值為( 。
A.2B.3C.0或3D.0或2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某體育館擬用運(yùn)動(dòng)場的邊角地建一個(gè)矩形的健身室(如圖所示),ABCD是一個(gè)標(biāo)出為50m的正方形地皮,扇形CEF是運(yùn)動(dòng)場的一部分,其半徑為40m,矩形AGHM就是擬建的健身室,其中G,M分別在AB和AD上,H在$\widehat{EF}$上,設(shè)矩形AGHM的面積為S,∠HCF=θ.
(I)請(qǐng)將S表示為θ的函數(shù),并指出當(dāng)點(diǎn)H在$\widehat{EF}$的何處時(shí),該健身室的面積最大,最大面積是多少?
(Ⅱ)由上面函數(shù)建立的思想,試求$f(x)=x\sqrt{4-{x^2}}$的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案