1.在等比數(shù)列{an}中,a1=1,a3=2a2,數(shù)列{an}前n項和Sn為( 。
A.Sn=2n-1B.Sn=2n-1C.Sn=n2D.Sn=2n-1

分析 利用等比數(shù)列通項公式求出公比q=2,由此能求出數(shù)列{an}前n項和Sn

解答 解:∵在等比數(shù)列{an}中,a1=1,a3=2a2
∴1×q2=2×1×q.
解得q=2,
∴數(shù)列{an}前n項和Sn=$\frac{1×(1-{2}^{n})}{1-2}$=2n-1.
故選:D.

點評 本題考查等比數(shù)列的通項公式、前n項和公式等基礎知識,考查考查推理論證能力、運算求解能力、抽象概括能力,考查轉化化歸思想、分類討論思想、函數(shù)與方程思想,考查創(chuàng)新意識、應用意識,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,在一段直行的公路上方D處有一測速球機,在球機下方路面有A,B,C三個測速點,測得球機距點A為14米,AB=10米,球機探測點B和C的俯角分別為60°和45°,現(xiàn)有一小汽車從A地到C地用時1秒,則小汽車經(jīng)過AC這段路程的平均速度約為18.1米/秒.(結果精確到0.1,參考數(shù)據(jù)$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.朱世杰是歷史上最偉大的數(shù)學家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問有如下問題:“今有官司差夫一千八百六十四人筑堤.只云初日差六十四人,次日轉多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日”.其大意為:“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天分發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”.這個問題中,前5天應發(fā)大米( 。
A.894升B.1170升C.1275米D.1467米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設sin(π-θ)=$\frac{1}{3}$,則cos2θ=( 。
A.$\frac{7}{9}$B.$-\frac{4\sqrt{2}}{9}$C.$-\frac{7}{9}$D.$±\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知拋物線C:y2=8x的焦點為F,準線l與x軸的交點為M,過點M的直線l′與拋物線C的交點為P,Q,延長PF交拋物線C于點A,延長QF交拋物線C于點B,若$\frac{|PF|}{|AF|}$+$\frac{|QF|}{|BF|}$=22,則直線l′的方程為y=±$\frac{\sqrt{6}}{6}$(x+2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知如圖,△ABC是邊長為4的等邊三角形,MC⊥平面ABC,D、E分別是線段AC、AB的中點,將△ADE沿DE翻折至△NDE,平面NDE⊥平面ABC.
(Ⅰ)求證:平面BCM∥平面EDN;
(Ⅱ)求三棱錐M-EDN的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設集合A={x|f(x)=x},B={x|f[f(x)]=x},設f(x)=x2-(2a-1)x+a2(常數(shù)a∈R),求證:A=B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{3a+2}{2}$x2+6ax+b,其中a,b∈R.
(1)若函數(shù)f(x)在x=1處取得極值-$\frac{1}{6}$,求a,b的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)$f(x)=3+\frac{{{2^x}-1}}{{{2^x}+1}}+sin2x$在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n等于( 。
A.0B.2C.4D.6

查看答案和解析>>

同步練習冊答案