化簡(jiǎn):
1+sina-cosa
1+sina+cosa
+
1+cosa+sina
1-cosa+sina
考點(diǎn):二倍角的余弦,三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:直接利用二倍角的余弦函數(shù)化簡(jiǎn)表達(dá)式,然后求解即可.
解答: 解:
1+sina-cosa
1+sina+cosa
+
1+cosa+sina
1-cosa+sina

=
1+2sin
α
2
cos
α
2
-1+2sin2
α
2
1+2sin
α
2
cos
α
2
+2cos2
α
2
-1
+
1+2sin
α
2
cos
α
2
+2cos2
α
2
-1
1+2sin
α
2
cos
α
2
-1+2sin2
α
2

=tan
α
2
+
1
tan
α
2

=
sin
α
2
cos
α
2
+
cos
α
2
sin
α
2

=
2
sinα
點(diǎn)評(píng):本題考查二倍角的余弦函數(shù)的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-1,0),離心率為
2
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(1,0),過(guò)P的直線l交橢圓C于A,B兩點(diǎn),求
OA
OB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx,g(x)=cos2x,以下判斷正確的序號(hào)是
 

(1)函數(shù)h(x)=f(x)-tanx在x∈(-
π
2
,0]上的零點(diǎn)只有1個(gè).
(2)函數(shù)h(x)=f(x+1)-
π
2x+2
在x∈(1,2π)上的零點(diǎn)只有1個(gè).
(3)函數(shù)h(x)=
1
2
f(x)+g(x)+a在x∈[0,π]的零點(diǎn)個(gè)數(shù)為1個(gè)時(shí),a無(wú)解
(4)函數(shù)h(x)=
1
2
f(x)+g(x)+a在x∈[0,π]的零點(diǎn)個(gè)數(shù)為2時(shí),a∈(-1,-
1
2
)∪{-
17
16
}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD中,E、F分別是AB、BC上的中點(diǎn),G屬于CD、H屬于AD,EH與FG相交于點(diǎn)P,求證:交點(diǎn)P必在直線BD上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,若(a+b+c)(sinA+sinB-sinC)=asinB,又sinA=
3
2
,則sinB=( 。
A、
1
2
B、
3
2
C、
2
2
3
D、
2
6
-1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=x3-2x-2在P處的切線平行于直線x-y+3=0,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC=4,∠BAC=90°,D是BC的中點(diǎn),若向量
AM
=
1
4
AB
+m•
AC
,且
AM
的終點(diǎn)M在△ACD的內(nèi)部(不含邊界),則
AM
BM
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y2-x-2y=0在二階矩陣M=
1 a
b 1
的作用下變換為曲線y2=x;
(Ⅰ)求實(shí)數(shù)a,b的值;   
(Ⅱ)求M的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)-1.
(1)若點(diǎn)P(1,-
3
)在角α的終邊上,求f(
α
2
-
π
12
)的值;
(2)若x∈[-
π
6
π
3
],求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案