在△ABC中,a,b,c分別為角A,B,C所對的邊,若(a+b+c)(sinA+sinB-sinC)=asinB,又sinA=
3
2
,則sinB=( 。
A、
1
2
B、
3
2
C、
2
2
3
D、
2
6
-1
6
考點(diǎn):正弦定理
專題:解三角形
分析:利用正弦定理求出A+B的余弦函數(shù)值,得到cos(A+B)=-
1
2
,繼而求出sinB的值
解答: 解:由正弦定理可知(sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB
⇒(sinA+sinB)2-sin2C=3sinAsinB,
⇒sin2A+2sinAsinB+sin2B-sin2(A+B)=3sinAsinB,
⇒sin2A+sin2B-(sinAcosB+cosAsinB)2=sinAsinB,
⇒sin2A+sin2B-sin2A•cos2B-2sinAcosBcosAsinB-cos2A•sin2B=sinAsinB
⇒2sin2Asin2B-2sinAcosBsinBcosA=sinAsinB
⇒cosAcosB-sinAsinB=-
1
2
,
?cos(A+B)=-
1
2
,
∴A+B=120°,
∵sinA=
3
2
,
∴A=60°或120°(舍去),
∴B=60°
解得sinB=
3
2

故選:B
點(diǎn)評:本題考查正弦定理的應(yīng)用,兩角和與差的余弦函數(shù)的求法,注意解得范圍,考查計(jì)算能力,另外利用正弦定理將條件中的角的正弦化為相應(yīng)的邊,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
x
+lnx,求f(x)在[
1
2
,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
k
x
有如下性質(zhì):如果常數(shù)k>0,那么該函數(shù)在(0,
k
)是減函數(shù),在(
k
,+∞)
是增函數(shù).
(1)已知f(x)=
4x2-12x+13
2x-3
,利用上述性質(zhì),試求函數(shù)f(x)在x∈[2,3]的值域和單調(diào)區(qū)間;
(2)由(1)中的函數(shù)f(x)和函數(shù)g(x)=x+a,若對任意的x∈[2,3],不等式f(x)<g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=|x-1|+|2x-1|+|3x-1|+…+|2011x-1|(x∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以莖葉圖記錄了甲乙兩組各五名學(xué)生在一次英語聽力測試中的成績(單位:分),已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x,y的值分別為( 。
A、5,2B、5,5
C、8,5D、8,8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
1+sina-cosa
1+sina+cosa
+
1+cosa+sina
1-cosa+sina

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1和x2是函數(shù)f(x)=x2-ax+a-2=0的兩個(gè)零點(diǎn).
(1)若x1和x2的值均小于2,求實(shí)數(shù)a的取值范圍;
(2)設(shè)m∈R,若不等式|m-5|≤|x1-x2|對任意實(shí)數(shù)a恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是一直角梯形,PA⊥底面ABCD,∠BAD=90°,AD∥BC,AB=BC=1,AD=AP=2,E為PD的中點(diǎn).以A為坐標(biāo)原點(diǎn),分別以AB、AD、AP為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系O-xyz.
(1)求
BE
的模;
(2)求
AE
DC
;(求異面直線AE與CD所成的角);
(3)設(shè)
n
=(1,p,q),滿足
n
⊥平面PCD,求
n
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按如圖所示的程序框圖,在運(yùn)行后輸出的結(jié)果為(  )
A、7B、8C、9D、10

查看答案和解析>>

同步練習(xí)冊答案