11.在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動.
(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.
休閑方式
性別
看電視運(yùn)動總計
432770
213354
總計6460124
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k
0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83

分析 (1)根據(jù)共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人的休閑方式是運(yùn)動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動.得到列聯(lián)表.
(2)根據(jù)列聯(lián)表中所給的數(shù)據(jù)做出觀測值,把觀測值同臨界值進(jìn)行比較得到有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系

解答 解:(1)2×2的列聯(lián)表

休閑方式
性別
看電視運(yùn)動總計
432770
213354
總計6460124
(2)假設(shè)“休閑方式與性別無關(guān)”計算$k=\frac{{124×{{(43×33-27×21)}^2}}}{70×54×64×60}≈6.201$
因?yàn)閗≥5.024,所以有理由認(rèn)為假設(shè)“休閑方式與性別無關(guān)”是不合理的,
即有97.5%的把握認(rèn)為“休閑方式與性別有關(guān).

點(diǎn)評 獨(dú)立性檢驗(yàn)是考查兩個分類變量是否有關(guān)系,并且能較精確的給出這種判斷的可靠程度的一種重要的統(tǒng)計方法,主要是通過k2的觀測值與臨界值的比較解決的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知tan(π-x)=3,則sin2x=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$內(nèi)一點(diǎn)P(2,1),直線過點(diǎn)P且與橢圓相交兩點(diǎn),則以P為中點(diǎn)的直線方程為32x-25y-89=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U={x∈N+|-2<x<9},M=(3,4,5),P={1,3,6},那么{2,7,8}是( 。
A.M∪PB.M∩PC.(∁UM)∪(∁P)D.(∁UM)∩(∁UP)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在以下的類比推理中結(jié)論正確的是(  )
A.若a•3=b•3,則a=b類比推出 若a•0=b•0,則a=b
B.若(a+b)c=ac+bc類比推出 $\frac{a+b}{c}=\frac{a}{c}+\frac{c}$(c≠0)
C.若(a+b)c=ac+bc類比推出  (a•b)c=ac•bc
D.若(ab)n=anbn類比推出 (a+b)n=an+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xoy,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=acost+\sqrt{3}}\\{y=asint}\end{array}}\right.$(t為參數(shù),a>0).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線${C_2}:{ρ^2}=2ρsinθ+6$.
(1)說明C1是哪種曲線,并將C1的方程化為極坐標(biāo)方程;
(2)已知C1與C2的交于A,B兩點(diǎn),且AB過極點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$,(t為參數(shù)),曲線C2:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1.
(1)化C1為普通方程,C2為參數(shù)方程;并說明它們分別表示什么曲線?
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3:x-2y-7=0距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)在(0,+∞)上為減函數(shù)的是( 。
A.y=-|x-1|B.y=x2-2x+3C.y=ln(x+1)D.y=2${\;}^{-\frac{x}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y={t^2}\end{array}\right.$(t為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線${C_2}:ρsin(θ-\frac{π}{3})=1$
(1)求曲線C1的極坐標(biāo)方程;
(2)若曲線C1與曲線C2相交于A、B,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案