6.在以下的類比推理中結(jié)論正確的是( 。
A.若a•3=b•3,則a=b類比推出 若a•0=b•0,則a=b
B.若(a+b)c=ac+bc類比推出 $\frac{a+b}{c}=\frac{a}{c}+\frac{c}$(c≠0)
C.若(a+b)c=ac+bc類比推出  (a•b)c=ac•bc
D.若(ab)n=anbn類比推出 (a+b)n=an+bn

分析 根據(jù)等式的基本性質(zhì),可以分析①中結(jié)論的真假;
根據(jù)等式的基本性質(zhì),可以分析②中結(jié)論的真假;
根據(jù)指數(shù)的運(yùn)算性質(zhì),可以分析③中結(jié)論的真假;
根據(jù)對數(shù)的運(yùn)算性質(zhì),可以分析④中結(jié)論的真假.

解答 解:A中“若a•3=b•3,則a=b”類推出“若a•0=b•0,則a=b”,結(jié)論不正確;
B中“若(a+b)c=ac+bc類比推出 $\frac{a+b}{c}=\frac{a}{c}+\frac{c}$(c≠0)結(jié)論正確;
C中若(a+b)c=ac+bc”類比出“(a•b)c=ac•bc”,結(jié)論不正確;
D中“(ab)n=anbn”類推出“(a+b)n=an+bn”,結(jié)論不正確.
故選:B.

點(diǎn)評(píng) 本題考查類比推理,其中熟練掌握各種運(yùn)算性質(zhì),是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在下列四個(gè)命題中,
①函數(shù)$y=tan({x+\frac{π}{4}})$的定義域是$\left\{{x\left|{x≠kπ+\frac{π}{4}\;,\;\;k∈Z}\right.}\right\}$;
②已知$sinα=\frac{1}{2}$,且α∈[0,2π],則α的取值集合是$\left\{{\frac{π}{6}}\right\}$;
③函數(shù)$y=sin({2x+\frac{π}{3}})+sin({2x-\frac{π}{3}})$的最小正周期是π;
④△ABC中,若cosA>cosB,則A<B.
其中真命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=f(x)滿足f(x-2)=x2-4x+9.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(x)-bx,若當(dāng)$x∈[{\frac{1}{2}\;,\;\;1}]$時(shí),g(x)的最大值為$\frac{11}{2}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)f,g都是由A到A的映射,其對應(yīng)法則如表(從上到下);
表1  映射f對應(yīng)法則
 原像 1 2 3 4
 像 3 4 1
表2  映射g的對應(yīng)法則
 原像 1 2 3
 像 4 3 1
則與f[g(1)]相同的是( 。
A.g[f(3)]B.g[f(2)]C.g[f(4)]D.g[f(1)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)對一切實(shí)數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a,b∈R,當(dāng)$0<x<\frac{1}{2}$時(shí),不等式f(x)+3<2x+a恒成立的a的集合記為A;當(dāng)x∈[-2,2]時(shí),使g(x)=f(x)-bx是單調(diào)函數(shù)的b的集合記為B.求A∩∁RB(R為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.
休閑方式
性別
看電視運(yùn)動(dòng)總計(jì)
432770
213354
總計(jì)6460124
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k
0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4+2$\sqrt{2}$πB.8+2$\sqrt{2}$πC.4+$\frac{2\sqrt{2}}{3}$πD.8+$\frac{2\sqrt{2}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=2$\sqrt{3}$cosθ-2sinθ,點(diǎn)A的極坐標(biāo)為($\sqrt{3}$,2π),把極點(diǎn)作為平面直角坐標(biāo)系的原點(diǎn),極軸作為x軸的正半軸,并在兩種坐標(biāo)系中取相同的長度單位.
(1)求圓C在直角坐標(biāo)系中的標(biāo)準(zhǔn)方程;
(2)設(shè)P為圓C上任意一點(diǎn),圓心C為線段AB的中點(diǎn),求|PA|+|PB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等邊△AB′C′邊長為$\sqrt{2}$,△BCD中,$BD=CD=1,BC=\sqrt{2}$(如圖1所示),現(xiàn)將B與B′,C與C′重合,將△AB′C′向上折起,使得$AD=\sqrt{3}$(如圖2所示).
(1)若BC的中點(diǎn)O,求證:平面BCD⊥平面AOD;
(2)在線段AC上是否存在一點(diǎn)E,使ED與面BCD成30°角,若存在,求出CE的長度,若不存在,請說明理由;
(3)求三棱錐A-BCD的外接球的表面積.

查看答案和解析>>

同步練習(xí)冊答案