【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如圖所示,為抑制房?jī)r(jià)過(guò)快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.

(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價(jià)y(萬(wàn)元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅銷售均價(jià);
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月份的所屬季度,記不同季度的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:
= ,

【答案】解:(Ⅰ)由題意

月份x

3

4

5

6

7

均價(jià)y

0.95

0.98

1.11

1.12

1.20

=5, =1.072, =10,
= =0.064, =0.752,
∴從3月到6月,y關(guān)于x的回歸方程為y=0.06x+0.75,
x=12時(shí),y=1.47.即可預(yù)測(cè)第12月份該市新建住宅銷售均價(jià)為1.47萬(wàn)元/平方米;
(Ⅱ)X的取值為1,2,3,
P(X=1)= = ,P(X=3)= = ,P(X=2)=1﹣P(X=1)﹣P(X=3)=
X的分布列為

X

1

2

3

P

E(X)=1× +2× +3× =
【解析】(Ⅰ)求出回歸系數(shù),可得回歸方程,即可預(yù)測(cè)第12月份該市新建住宅銷售均價(jià);(Ⅱ)X的取值為1,2,3,求出相應(yīng)的概率,即可求X的分布列和數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB,b=2,則△ABC面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l與平面α相交但不垂直,m為空間內(nèi)一條直線,則下列結(jié)論一定不成立的是(
A.m⊥l,mα
B.m⊥l,m∥α
C.m∥l,m∩α≠
D.m⊥l,m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格紙上的小正方形的邊長(zhǎng)為1,粗實(shí)線畫(huà)出的是某多面體的三視圖,則該多面體外接球的表面積為 (

A.9π
B.18π
C.36π
D.144π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正四面體ABCD中,E、F分別為邊AB、BD的中點(diǎn),則異面直線AF、CE所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,平面ABC⊥平面BCD,△BAC與BCD均為等于直角三角形,且∠BAC=∠BCD=90°,BC=2,點(diǎn)P是線段AB上的動(dòng)點(diǎn),若線段CD上存在點(diǎn)Q,使得異面直線PQ與AC成30°的角,則線段PA長(zhǎng)的取值范圍是(
A.(0,
B.[0, ]
C.(
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的程序框圖中,輸出的B是(
A.
B.0
C.﹣
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知P是函數(shù)f(x)=ex(x>0)的圖象上的動(dòng)點(diǎn),該圖象在點(diǎn)P處的切線l交y軸于點(diǎn)M,過(guò)點(diǎn)P作l的垂線交y軸于點(diǎn)N,設(shè)線段MN的中點(diǎn)的縱坐標(biāo)為t,則t的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,它在點(diǎn) 處的切線為直線l.
(1)求直線l的直角坐標(biāo)方程;
(2)已知點(diǎn)P為橢圓 =1上一點(diǎn),求點(diǎn)P到直線l的距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案