【題目】已知函數(shù)時都取得極值;

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對,不等式恒成立,求的取值范圍

【答案】1a,b=-2,遞增區(qū)間是(-,- )與(1,+)遞減區(qū)間是(-,1)(2c-1或c2

【解析】 試題分析:(1)根據(jù)極值定義得f)=0,f1=0,解方程組可得的值,再列表根據(jù)導函數(shù)符號確定單調(diào)區(qū)間(2)不等式恒成立問題一般轉(zhuǎn)化為對應函數(shù)最值問題:fx最大值c2,根據(jù)(1)可得fx最大值為f2),解不等式可得的取值范圍

試題解析:解:(1)fx)=x3ax2bxcfx)=3x22axb

f)=,f1)=32ab0

a,b=-2

fx)=3x2-x-2=(3x+2)(x-1),函數(shù)fx的單調(diào)區(qū)間如下表:

x

(-,-

(-,1

1

1,+

fx

0

0

fx

極大值

極小值

所以函數(shù)f(x)的遞增區(qū)間是(-,- )與(1,+

遞減區(qū)間是(-,1

2fx)=x3x22xc,x〔-1,2〕,當x=-時,fx)=c

為極大值,而f2=2+c,則f2=2+c為最大值。

要使fxc2x〔-1,2〕)恒成立,只需c2f2)=2c

解得c-1或c2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓心坐標為( ,1)的圓M與x軸及直線y= x分別相切于A,B兩點,另一圓N與圓M外切、且與x軸及直線y= x分別相切于C、D兩點.
(1)求圓M和圓N的方程;
(2)過點B作直線MN的平行線l,求直線l被圓N截得的弦的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若ABC的三個頂點的坐標分別為A(4,0),B(6,7),C(0,3).
①求BC邊上的高所在直線的方程;
②求BC邊上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市對創(chuàng)“市級優(yōu)質(zhì)學!钡募住⒁覂伤鶎W校復查驗收,對辦學的社會滿意度一項評價隨機訪問了位市民,根據(jù)這位市民對這兩所學校的評分(評分越高表明市民的評價越好),繪制莖葉圖如下:

(1)分別估計該市的市民對甲、乙兩所學校評分的中位數(shù);

(2)分別估計該市的市民對甲、乙兩所學校的評分不低于分的概率;

(3)根據(jù)莖葉圖分析該市的市民對甲、乙兩所學校的評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進行合理定價,將產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

已知

(1)求的值

(2)已知變量具有線性相關(guān)性,求產(chǎn)品銷量關(guān)于試銷單價的線性回歸方程 可供選擇的數(shù)據(jù)

(3)用表示(2)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值。當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。

參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明同學在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):

日期

1月11號

1月12號

1月13號

1月14號

1月15號

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式

(3)根據(jù)(2)所得的線性回歸方程,若天氣預報1月16號的白天平均氣溫為,請預測該奶茶店這種飲料的銷量.

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設△AOB的外接圓圓心為E.

(1)若⊙E與直線CD相切,求實數(shù)a的值;
(2)設點P在圓E上,使△PCD的面積等于12的點P有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的側(cè)棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD= CD=2,點M在側(cè)棱上.
(1)求證:BC⊥平面BDP;
(2)若側(cè)棱PC與底面ABCD所成角的正切值為 ,點M為側(cè)棱PC的中點,求異面直線BM與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

同步練習冊答案