16.-330°化成弧度制是(  )
A.$-\frac{4}{3}π$B.$-\frac{5}{3}π$C.$-\frac{7}{6}π$D.$-\frac{11}{6}π$

分析 根據(jù)弧度與角度之間的轉(zhuǎn)化關(guān)系進(jìn)行變化.

解答 解:∵1°=$\frac{π}{180}$,
∴-330°=-330°×$\frac{π}{180}$=-$\frac{11π}{6}$.
故選:D.

點(diǎn)評 本題考查了將角度制化為弧度制,屬于基礎(chǔ)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,AB為圓O的直徑,過點(diǎn)B作圓O的切線BC,任取圓O上異于A、B的一點(diǎn)E,連接AE并延長交BC于點(diǎn)C,過點(diǎn)E作圓O的切線,交邊BC于一點(diǎn)D.
(Ⅰ)求證:OD∥AC;
(Ⅱ)若OD交圓O于一點(diǎn)M,且∠A=60°,求$\frac{OM}{OD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x-2}}}-\sqrt{x-5}$,則函數(shù)的定義域?yàn)閇5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在下列條件中,可判定平面α與平面β平行的是(  )
A.α,β都平行于直線a
B.α內(nèi)有三個不共線的點(diǎn)到β的距離相等
C.l,m是α內(nèi)的兩條直線,且l∥β,m∥β
D.l,m是兩條異面直線,且l∥α,m∥α,l∥β,m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.?dāng)?shù)列{an}中,滿足an+2+an=2an+1,且a2,a4028是函數(shù)f(x)=$\frac{1}{3}$x3-3x2+8x+2的極值點(diǎn),則log3a2015的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=sinxcosx+\sqrt{3}{cos^2}x-\frac{{\sqrt{3}}}{2}$.
(1)求f(x)的最小正周期和對稱軸;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$y=sin({-2x+\frac{π}{6}}),x∈R$
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其對應(yīng)的x的值;
(3)寫出函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=asinx+bcosx(a>0),且當(dāng)f($\frac{π}{4}$)=$\sqrt{2}$時f(x)的最大值為$\sqrt{10}$.
(1)求a,b的值.
(2)若f(x)=1且x≠kπ,(k∈Z)求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓(x+1)2+y2=9與直線y=tx+3交于A,B兩點(diǎn),點(diǎn)P(a,b)在直線y=2x上,且PA=PB,則a的取值范圍為(-1,0)∪(0,2).

查看答案和解析>>

同步練習(xí)冊答案