10.已知樣本x1,x2,x3,…,xn的方差是2,則樣本3x1+2,3x2+2,3x3+2,…,3xn+2的標(biāo)準(zhǔn)差為3$\sqrt{2}$.

分析 根據(jù)題意,設(shè)原樣本的平均數(shù)為$\overline{x}$,分析可得新樣本的平均數(shù),然后利用方差的公式計算得出答案,求出標(biāo)準(zhǔn)差即可.

解答 解:根據(jù)題意,設(shè)原樣本的平均數(shù)為$\overline{x}$,
即x1+x2+x3+…+xn=n$\overline{x}$,
其方差為2,即$\frac{1}{n}$×[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2]=2,
則$\frac{1}{n}$(3x1+2+3x2+2+3x3+2+…+3xn+2)=3$\overline{x}$+2,
則樣本3x1+2,3x2+2,3x3+2,…,3xn+2的方差為$\frac{1}{n}$[(3x1+2-3$\overline{x}$-2)2+(3x2+2-3$\overline{x}$-2)2+…+(3xn+2-3$\overline{x}$-2)2]=9×[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2]=18,
其標(biāo)準(zhǔn)差S=$\sqrt{18}$=3$\sqrt{2}$;
故答案為:3$\sqrt{2}$.

點評 本題考查了方差、標(biāo)準(zhǔn)差的計算,關(guān)鍵是掌握數(shù)據(jù)的方差、標(biāo)準(zhǔn)差的計算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若△ABC的三邊之比為3:5:7,則這個三角形較大的銳角的余弦值為( 。
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{13}{14}$D.$\frac{11}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和Sn=n2+2n.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列$\left\{{\frac{a_n}{2^n}}\right\}$的前n項和為Tn,證明:$\frac{3}{2}≤{T_n}$<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=mlnx-$\frac{2n}{x}$(m,n∈R)在x=1處有極值1.
(1)求實數(shù)m,n的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在R上的可導(dǎo)函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+2bx+c$,極大值點x1∈(0,1),極小值點x2∈(1,2),則$\frac{b-2}{a-1}$的取值范圍是( 。
A.$(-\frac{1}{2},\frac{1}{4})$B.$(-\frac{1}{2},\frac{1}{2})$C.$(\frac{1}{4},1)$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.矩形ABCD的對角線AC,BD成60°角,把矩形所在的平面以AC為折痕,折成一個直二面角D-AC-B,連接BD,則BD與平面ABC所成角的正切值為( 。
A.$\sqrt{\frac{7}{10}}$B.$\frac{\sqrt{21}}{7}$C.$\frac{3}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若a與b相交,則過a與b平行的平面有0個;若a與b異面,則過a與b平行的平面有1個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)p:實數(shù)x滿足x2-4ax+3a2≤0(a>0),q:實數(shù)x滿足$\frac{x-3}{x-2}<0$
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}2-|{lnx}|,x>0\\{({x+2})^2},x≤0\end{array}\right.$,若函數(shù)y=f(x)+b(其中b∈R)恰有3個零點,則b的取值范圍是{-2,0}.

查看答案和解析>>

同步練習(xí)冊答案