16.定義運算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,則符合條件$|{\begin{array}{l}z&{1+i}\\{-i}&{2i}\end{array}}|=0$的復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用新定義得到關(guān)于z的等式,求得z后得答案.

解答 解:由題意可得,$|{\begin{array}{l}z&{1+i}\\{-i}&{2i}\end{array}}|=0$,
得:z•2i+i(1+i)=0,
即z=$\frac{1-i}{2i}$=$\frac{(1-i)i}{2{i}^{2}}$=$\frac{1+i}{-2}$=-$\frac{1}{2}$-$\frac{1}{2}$i,
故$\overline{z}$=-$\frac{1}{2}$+$\frac{1}{2}$i
∴復(fù)數(shù)$\overline{z}$對應(yīng)的點的坐標的坐標為(-$\frac{1}{2}$,$\frac{1}{2}$)在第二象限.
故選:B.

點評 本題是新定義題,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx+bx2的圖象在點(1,f(1))處的切線方程為x-y-1=0,g(x)=2af(x+t),t∈R且t≤2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求證:g(x)<ex+f(x+t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù))在以原點O為極點,x軸的非負半軸為極軸的極坐標系中,曲線C2的極坐標方程為ρcos2θ=sinθ.
(1)求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(2)過原點且傾斜角為α($\frac{π}{6}$<α≤$\frac{π}{4}$)的射線l與曲線C1,C2分別相交于A,B兩點(A,B異于原點),求|OA|•|OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在同一平面直角坐標系中經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=5x\\ y'=3y\end{array}\right.$后,曲線C變?yōu)榍2x′2+8y′2=1,則曲線C的方程為( 。
A.25x2+36y2=1B.50x2+72y2=1C.10x2+24y2=1D.$\frac{{2{x^2}}}{25}+\frac{{8{y^2}}}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}中,an=n,前n項和為Sn,則$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{100}}$=$\frac{200}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個底面是正三角形的三棱柱的正視圖如圖所示,其頂點都在同一個球面上,則該球的內(nèi)接正方體的表面積為( 。
A.$\frac{19}{6}$B.$\frac{38}{3}$C.$\frac{57}{8}$D.$\frac{19}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若α是第四象限,則180°-α是第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-ax-$\frac{1}{2}{x^3}({a∈R})$.
(1)若曲線y=f(x)在點(1,f(1))處的切線經(jīng)過點$({3,\frac{9}{2}})$,求a的值;
(2)若f(x)在(1,2)上存在極值,求a的取值范圍;
(3)當(dāng)x>0時,f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若(x+2)n=xn+axn-1+…+bx+c(n∈N*,n≥3),且b=4c,則a的值為16.

查看答案和解析>>

同步練習(xí)冊答案