8.下列函數(shù)中既是奇函數(shù)又是最小正周期為π的函數(shù)的是( 。
A.y=|sinx|B.$y=cos({2x+\frac{π}{2}})$C.y=sin2x+cos2xD.y=sinx-cosx

分析 根據(jù)題意,依次分析選項(xiàng),判定選項(xiàng)函數(shù)是否滿足題意要求,即可得答案.

解答 解:根據(jù)題意,依次分析選項(xiàng):
對于A、函數(shù)y=|sinx|,有f(-x)=|sin(-x)|=|sinx|=f(x),為偶函數(shù),不符合題意;
對于B、函數(shù)y=cos(2x+$\frac{π}{2}$)=-sin2x,有f(-x)=-sin(-2x)=sin2x=-f(x),為奇函數(shù),其周期T=$\frac{2π}{2}$=π,符合題意;
對于C、函數(shù)y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),為非奇非偶函數(shù),不符合題意;
對于D、函數(shù)y=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$),為非奇非偶函數(shù),不符合題意;
故選:B.

點(diǎn)評 本題考查三角函數(shù)的周期計(jì)算,涉及函數(shù)奇偶性的判定方法,注意要先化簡三角函數(shù)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\sqrt{3}$sinα+cosα=m,其中$α∈(0,\frac{π}{2})$,則實(shí)數(shù)m的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖在一個(gè)60°的二面角的棱上有兩個(gè)點(diǎn)A、B,線段AC、BD分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱AB,且AB=AC=1,BD=2,則CD的長為(  )
A.2B.$\sqrt{5}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{3x-2y+4≥0}\\{x+ay-4≤0}\\{x-y-2≤0}\end{array}\right.$,已知z=2x+y的最大值是7,最小值是-26,則實(shí)數(shù)a的值為( 。
A.6B.-6C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若拋物線y2=2px的焦點(diǎn)與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{1}$=1的右焦點(diǎn)重合,則p的值為( 。
A.2$\sqrt{10}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)為$F({0,\sqrt{50}})$且該橢圓被直線y=3x-2截得的弦的中點(diǎn)的橫坐標(biāo)為$\frac{1}{2}$,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知|z|=2+z+3i,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列4個(gè)命題是真命題的個(gè)數(shù)是(  )
①“若x2+y2=0,則x、y均為零”的逆命題
②“全等三角形的面積相等”的否命題
③“若A∩B=A,則A⊆B”的逆否命題
④“末位數(shù)字不是零的數(shù)可被5整除”的逆否命題.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.我國南北朝時(shí)期數(shù)學(xué)家、天文學(xué)家祖暅提出了著名的祖暅原理:“冪勢既同,則積不容異”.“勢”即是高,“冪”即是面積.意思是說如果兩等高的幾何體在同高處截得兩幾何體的截面積相等,那么這兩個(gè)幾何體的體積相等.已知某不規(guī)則幾何體與如圖所對應(yīng)的幾何體滿足:“冪勢同”,則該不規(guī)則幾何體的體積為(圖中的網(wǎng)格紙中的小正方形的邊長為1)( 。
A.4B.8C.16D.20

查看答案和解析>>

同步練習(xí)冊答案