對(duì)平面內(nèi)兩定點(diǎn)A、B及動(dòng)點(diǎn)P,有以下兩個(gè)命題:p:|PA|+|PB|是定值;q:點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓.則p是q的(    )

A.充分不必要條件                        B.必要不充分條件

C.充要條件                                 D.既不充分又不必要條件

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面內(nèi)兩向量
a
,
b
滿足:
a
b
,|
a
|=2,|
b
|=1
,點(diǎn)M(x,y)的坐標(biāo)滿足:x
a
+(y2-4)
b
-x
a
+
b
互相垂直.求證:平面內(nèi)存在兩個(gè)定點(diǎn)A、B,使對(duì)滿足條件的任意一點(diǎn)M均有|||
MA
|-|
MB
||
等于定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)與兩定點(diǎn)A1(-2,0),A2(2,0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1,A2兩點(diǎn),所成的曲線C可以是圓,橢圓或雙曲線.
(I)求曲線C的方程,并討論C的形狀與m值的關(guān)系.
(Ⅱ)當(dāng)m=-1時(shí),對(duì)應(yīng)的曲線為C1;對(duì)給定的m∈(-∞,-1),對(duì)應(yīng)的曲線為C2,若曲線C1的斜率為1的切線與曲線C2相交于A,B兩點(diǎn),且
OA
OB
=2
(O為坐標(biāo)原點(diǎn)),求曲線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:047

設(shè)平面內(nèi)兩向量a、b滿足:ab,|a|=2,|b|=1,點(diǎn)M(x,y)的坐標(biāo)滿足:xa+(y2-4)b與-xab互相垂直.

求證:平面內(nèi)存在兩個(gè)定點(diǎn)A、B,使對(duì)滿足條件的任意一點(diǎn)M均有|||-|||等于定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第8章 圓錐曲線):8.10 向量在解析幾何中的應(yīng)用(解析版) 題型:解答題

設(shè)平面內(nèi)兩向量滿足:,點(diǎn)M(x,y)的坐標(biāo)滿足:互相垂直.求證:平面內(nèi)存在兩個(gè)定點(diǎn)A、B,使對(duì)滿足條件的任意一點(diǎn)M均有|等于定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案