(1)log2.56.25+lg
1
100
+ln
e
+2 1+log23;
(2)(
32
×
3
6+(
2
2
 
4
3
-4(
16
49
 
1
2
-
42
×80.25+(-2014)0
考點(diǎn):對數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用對數(shù)的運(yùn)算法則即可得出;
(2)利用指數(shù)冪的運(yùn)算法則即可得出.
解答: 解:(1)原式=log2.52.52+lg10-2+lne
1
2
+2×2log23
=2-2+
1
2
+2×3
=
13
2

(2)原式=(2
1
3
×3
1
2
)6
+(2
3
4
)
4
3
-4×(
4
7
)2×(-
1
2
)
-2
1
4
×2
3
4
+1
=22×33+2-4×
7
4
-2+1
=108-7+1
=102.
點(diǎn)評:本題考查了對數(shù)與指數(shù)冪的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

A={x|x2-2x-3≥0},B={x|x2-5x+6≤0}
(1)求A∪B;
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC滿足c=2acosB,則△ABC的形狀是(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)長方體的相交于一個(gè)頂點(diǎn)的三個(gè)面的面積分別是2,3,6,則長方體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式cosθ(1-x)2-2x(1-x)+2
2
x2sinθ≥0對一切x∈[0,1]恒成立,則θ的取值范圍是( 。
A、[kπ+
π
8
,kπ+
8
](k∈Z)
B、[2kπ+
π
8
,2kπ+
8
](k∈Z)
C、[kπ+
π
12
,kπ+
12
](k∈Z)
D、[2kπ+
π
12
,2kπ+
12
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=
4cosθ
sin2θ
,直線l的參數(shù)方程為
x=tcosα
y=1+tsinα
(t為參數(shù),0≤a<π).
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若直線l經(jīng)過點(diǎn)(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形ABCD,E,F(xiàn),G,H分別邊AB,BC,CD,DA的中點(diǎn),則EG與FH位置關(guān)系是( 。
A、相交B、平行C、異面D、重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,已知∠ABC=90°,AB=BC=4,BB1=3,M、N分別是B1C1和AC的中點(diǎn).
(1)求三棱錐B1-ABC1的體積;
(2)求MN與底面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,下列各 式運(yùn)算結(jié)果為向量
BD1
的是( 。
①(
A1D1
-
A1A
)-
AB
;    
②(
BC
+
BB1
)-
D1C1

③(
AD
-
AB
)-
DD1
;  
④(
B1D1
-
A1A
)+
DD1
A、①②B、②③C、③④D、①④

查看答案和解析>>

同步練習(xí)冊答案