已知函數(shù)y=Asin(ωx+φ)+B的一部分圖象如圖所示,如果A>0,ω>0,|φ|<
π
2
,求該函數(shù)的解析式,并求f(0)的值.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:由圖在知,T=π,從而知ω=2,易求A=2,B=2;利用y=2sin(2x+φ)+2的圖象經(jīng)過(
12
,2),可求得φ=2kπ+
π
6
(k∈Z),又|φ|<
π
2
,可求得φ,于是得到y(tǒng)=f(x)的函數(shù)解析式,從而可求得f(0)的值.
解答: 解:∵A>0,由圖知,
A+B=4
-A+B=0

解得A=2,B=2;
T
4
=
12
-
π
6
=
π
4

∴T=
ω
=π,
解得:ω=2,
∴y=2sin(2x+φ)+2,
又y=2sin(2x+φ)+2的圖象經(jīng)過(
12
,2),
∴2×
12
+φ=2kπ+π(k∈Z),
∴φ=2kπ+
π
6
(k∈Z),又|φ|<
π
2
,
∴φ=
π
6
,
∴該函數(shù)的解析式為:y=f(x)=2sin(2x+
π
6
)+2,
∴f(0)=2×sin
π
6
+2=3.
點(diǎn)評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,求得φ是關(guān)鍵,也是難點(diǎn),考查分析求解與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
)+1,
(Ⅰ)用“五點(diǎn)法”畫出該函數(shù)在一個(gè)周期內(nèi)的簡圖;
(Ⅱ)寫出該函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,a1=3,a3=9,
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求和Sn=
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=2,求
2sinα+cosα
sinα-cosα
和sin2α-2sinαcosα+3cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某地一天從4~16時(shí)的溫度變化曲線近似滿足函數(shù)y=10sin(
π
8
x-
4
)+20,x∈[4,16].
(Ⅰ)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差;
(Ⅱ)若有一種細(xì)菌在15℃到25℃之間可以生存,那么在這段時(shí)間內(nèi),該細(xì)菌最多能生存多長時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β都是銳角,cosα•cosβ-sinα•sinβ=-
11
14
,cosα=
1
7
,求cosβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知角α的終邊與單位圓交點(diǎn)的橫坐標(biāo)是-
3
5
,角α+β的終邊與單位圓交點(diǎn)的縱坐標(biāo)是
5
13
,且α、β∈(0,π)則cosβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=0,an+1=an+2n-1(n∈N*),則數(shù)列{an}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是以π為周期的偶函數(shù),且x∈[0,
π
2
]
時(shí),f(x)=1-sinx,則當(dāng)x∈[
5
2
π,3π]
時(shí),f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案