分析 設∠DBM=θ,在△CDA中,由正弦定理可得$\frac{CD}{sin(\frac{π}{2}-2θ)}$=$\frac{AC}{sin2θ}$,在△AMB中,由正弦定理可得$\frac{MA}{sin(\frac{π}{2}-2θ)}$=$\frac{AB}{sin(π-θ)}$,繼而可得$\frac{CD}{MA}$=$\frac{1}{2}$,問題得以解決
解答 解:設∠DBM=θ,則∠ADC=2θ,∠DAC=$\frac{π}{2}$-2θ,∠AMB=$\frac{π}{2}$-2θ,
在△CDA中,由正弦定理可得$\frac{CD}{sin(\frac{π}{2}-2θ)}$=$\frac{AC}{sin2θ}$,
在△AMB中,由正弦定理可得$\frac{MA}{sin(\frac{π}{2}-2θ)}$=$\frac{AB}{sin(π-θ)}$,
∴$\frac{CD}{MA}$=$\frac{ACsinθ}{ABsin2θ}$=$\frac{ACsinθ}{2ABsinθcosθ}$=$\frac{1}{2}$,
從而MA=2,
故答案為:2.
點評 本題考查了正弦定理的應用,關鍵是掌握應用的條件,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{8\sqrt{2}}}{3}π$ | B. | $\frac{{4\sqrt{2}}}{3}π$ | C. | $\frac{4}{3}π$ | D. | $\frac{32}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{7}{6}$,+∞) | B. | (-∞,$\frac{7}{6}$) | C. | (-∞,$\frac{1}{3}$) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12,-15 | B. | 5,-15 | C. | 12,-5 | D. | 5,-16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{8}$ | C. | $\frac{\sqrt{2}}{12}$ | D. | $\frac{\sqrt{2}}{16}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com