A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{8}$ | C. | $\frac{\sqrt{2}}{12}$ | D. | $\frac{\sqrt{2}}{16}$ |
分析 取CD中點(diǎn)E,連結(jié)BE,AE,作AO⊥底面BCD,交BE于O,A到平面PQR的距離h=$\frac{1}{2}AO$,三棱錐Q-APR的體積為VQ-APR=VA-BCD,由此能求出結(jié)果.
解答 解:取CD中點(diǎn)E,連結(jié)BE,AE,作AO⊥底面BCD,交BE于O,
∵在各棱長(zhǎng)都為2的三棱錐A-BCD中,棱DA,DB,DC的中點(diǎn)分別為P,Q,R,
∴QR=QP=PR=1,∴S△PQR=$\frac{1}{2}×1×1×sin60°$=$\frac{\sqrt{3}}{4}$,
BE=AE=$\sqrt{4-1}=\sqrt{3}$,OE=$\frac{1}{3}BE=\frac{\sqrt{3}}{3}$,
AO=$\sqrt{3-\frac{1}{3}}$=$\frac{2\sqrt{6}}{3}$,A到平面PQR的距離h=$\frac{1}{2}AO=\frac{\sqrt{6}}{3}$,
∴三棱錐Q-APR的體積為:
VQ-APR=VA-BCD=$\frac{1}{3}×h×{S}_{△PQR}$=$\frac{1}{3}×\frac{\sqrt{6}}{3}×\frac{\sqrt{3}}{4}$=$\frac{\sqrt{2}}{12}$.
故選:C.
點(diǎn)評(píng) 本題考查三棱錐的體積的取值范圍的求法,考查空間想象能力與計(jì)算能力,考查空間思維能力,考查推理論證能力,考查數(shù)形結(jié)合思想、等價(jià)轉(zhuǎn)化思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(1,\sqrt{3})$ | B. | $(\sqrt{2},\sqrt{3})$ | C. | $(\sqrt{2},2)$ | D. | $(\sqrt{3},2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,$\sqrt{3}$} | B. | {0,$\sqrt{3}$,$\frac{\sqrt{3}}{3}$} | C. | {0,$\sqrt{3}$,$-\frac{\sqrt{3}}{3}$} | D. | {0,$\sqrt{3}$,-$\sqrt{3}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | 1+$\sqrt{2}$ | C. | 2+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0,1} | B. | {-1,1} | C. | {-1,1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{3}{2}$i | D. | $\frac{1}{2}$i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com