若動點P(x,y)到定點F(5,0)的距離是它到直線x=
9
5
的距離的
5
3
倍,則動點P的軌跡方程是
 
考點:軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)兩點間距離公式表示出動點P(x,y)到定點F(5,0)的距離和動點P(x,y)到直線x=
9
5
的距離,然后建立方程化簡即可.
解答: 解:∵點P(x,y)到定點F(5,0)的距離是
(x-5)2+y2
,
點P(x,y)到直線x=
9
5
的距離是|x-
9
5
|,
(x-5)2+y2
=
5
3
|x-
9
5
|,
化簡為
x2
9
-
y2
16
=1

故答案為
x2
9
-
y2
16
=1
點評:本題主要考查了兩點間距離公式,點到直線的距離等知識以及基本運算能力.屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C所對的邊分別為a,b,c.若a=
2
,b=2
,且sinB+cosB=
2
,求角A,B,C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(1,3),N(5,-2),若x軸上存在一點P,使|PM-PN|最大,則點P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2+8y=0的焦點到其準(zhǔn)線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點P(2,-3)作圓x2+2x+y2=24的弦AB,使得點P平分弦AB,則弦AB所在直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓C以拋物線y2=4x的焦點為圓心,且與拋物線的準(zhǔn)線相切,則該圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面上兩點F1,F(xiàn)2滿足|F1F2|=4,設(shè)d為實數(shù),令D表示平面上滿足||PF1|-|PF2||=d的所有P點組成的圖形,又令C為平面上以F1為圓心、6為半徑的圓.則下列結(jié)論中,其中正確的有
 
(寫出所有正確結(jié)論的編號).
①當(dāng)d=0時,D為直線;
②當(dāng)d=1時,D為雙曲線;
③當(dāng)d=2時,D與圓C交于兩點;
④當(dāng)d=4時,D與圓C交于四點;
⑤當(dāng)d=4時,D不存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線4x+3y=0與圓(x-1)2+(y-2)2=16的位置關(guān)系是(  )
A、相離B、相切
C、相交但不過圓心D、相交過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任何a∈[-1,1],使f(x)=x2+(a-4)x+4-2a的值總大于0的充要條件是(  )
A、1<x<3
B、x<1或x>3
C、1<x<2
D、x<1或x>2

查看答案和解析>>

同步練習(xí)冊答案