已知tanα=2,求值
(1)
sin(π-α)cos(2π-α)sin(-α+
2
)
tan(-α-π)sin(-π-α)
;
(2)
sinα+3cosα
sinα-cosα

(3)sin2α+sinαcosα+3cos2α
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:計(jì)算題,三角函數(shù)的求值
分析:先化簡,再弦化切,即可得出結(jié)論.
解答: 解:(1)原式=
sinαcosα(-cosα)
(-tanα)sinα
=
cos2α
tanα

tanα=2,
1
cos2α
=1+tan2α=5
,∴cos2α=
1
5

∴原式=
1
10

(2)
sinα+3cosα
sinα-cosα
=
tanα+3
tanα-1
=5     
(3)sin2α+sinαcosα+3cos2α=
sin2α+sinαcosα+3cos2α
sin2α+cos2α
=
tan2α+tanα+3
tan2α+1
=
9
5
點(diǎn)評:本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,弦化切,是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓準(zhǔn)線x=4對應(yīng)焦點(diǎn)(2,0),離心率e=
1
2
,則橢圓方程為( 。
A、
x2
8
+
y2
4
=1
B、3x2+y2+28y+60=0
C、3x2+4y2-8x=0
D、2x2+3y2-7x+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、空間不同三點(diǎn)確定一個平面
B、空間兩兩相交的三條直線確定一個平面
C、兩組對邊相等的四邊形是平行四邊形
D、和同一直線都相交的三條平行線在同一平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b,則下列不等式中恒成立的是( 。
A、
a
b
>1
B、
1
a
1
b
C、a2>b2
D、a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于命題P:存在一個常數(shù)M,使得不等式
a
2a+b
+
b
2b+a
≤M≤
a
a+2b
+
b
b+2a
對任意正數(shù)a,b恒成立.
(1)試給出這個常數(shù)M的值;
(2)在(1)所得結(jié)論的條件下證明命題P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,1),
b
=(cosx,1),x∈R.
(1)當(dāng)x=
π
4
時,求向量a+b的坐標(biāo);
(2)若函數(shù)f(x)=|
a
+
b
|2+m為奇函數(shù),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用分析法證明:
a
-
a-1
a-2
-
a-3
(a≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3mx+n(m>0)的極大值為6,極小值為2,求:
(Ⅰ)實(shí)數(shù)m,n的值;            
(Ⅱ)f(x)在區(qū)間[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=5,a2=5,an+1=an+6an-1,(n≥2,n∈N*).
(Ⅰ)求證數(shù)列{an+1+2an}是等比數(shù)列;
(Ⅱ)求出所有使數(shù)列{an+1+λan}成等比數(shù)列的λ的值;
(Ⅲ)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案