10.已知點(diǎn)M(x,y)是圓C:x2+y2-2x=0的內(nèi)部任意一點(diǎn),則點(diǎn)M滿足y≥x的概率是( 。
A.$\frac{1}{4}$B.$\frac{π-2}{4}$C.$\frac{1}{2π}$D.$\frac{π-2}{4π}$

分析 由題意,本題是幾何概型的求法,首先分別求出事件對應(yīng)區(qū)域面積,利用面積比求概率.

解答 解:點(diǎn)M(x,y)是圓C:x2+y2-2x=0的內(nèi)部任意一點(diǎn),對應(yīng)區(qū)域面積為則點(diǎn)M滿足y≥x的區(qū)域如圖陰影部分,由幾何概型的公式得到$\frac{\frac{1}{4}π×{1}^{2}-\frac{1}{2}×{1}^{2}}{π×{1}^{2}}=\frac{π-2}{4π}$;
故選:D.

點(diǎn)評 本題考查了幾何概型的概率求法;關(guān)鍵是明確幾何測度,利用面積比求概率是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察下面一組等式:
S1=1,
S2=2+3+4=9,
S3=3+4+5+6+7=25,
S4=4+5+6+7+8+9+10=49,

根據(jù)上面等式猜測S2n-1=(4n-3)(an+b),則a2+b2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某四棱錐的三視圖如圖所示,則該四棱錐的側(cè)面積為(  )
A.8B.8+4$\sqrt{10}$C.2$\sqrt{10}$+$\sqrt{13}$D.4$\sqrt{10}$+2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教
(1)4個人分到甲學(xué)校,2個人分到乙學(xué)校,1個人分到丙學(xué)校,有多少種不同的分配方案?
(2)一所學(xué)校去4個人,另一所學(xué)校去2個人,剩下的一個學(xué)校去1個人,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=$\sqrt{3}$f(x),x∈[0,2)時,f(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,x∈[0,1)}\\{-2•(\frac{1}{3})^{|x-\frac{4}{3}|},x∈[1,2)}\end{array}\right.$,x
∈[-4,-2)時,f(x)≥t2-$\frac{7}{3}$t恒成立,則實(shí)數(shù)t的取值范圍是( 。
A.[$\frac{1}{2}$,3)B.(-∞,$\frac{1}{2}$]∪(3,+∞)C.[$\frac{1}{3}$,2]D.(-∞,$\frac{1}{3}$]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}中,若存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個H值.現(xiàn)有如下數(shù)列:①an=1-2n;②an=sinn;③an=$\frac{n-2}{{e}^{n-3}}$④an=lnn-n,則存在H值的數(shù)列有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若$\frac{1+cosα}{sinα}$=2,則cosα-3sinα=( 。
A.-3B.3C.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l:kx-y-3=0與圓O:x2+y2=4交于A、B兩點(diǎn)且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,則k=( 。
A.2B.±$\sqrt{2}$C.±2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過點(diǎn)P(2,3)作圓(x-1)2+y2=1的兩條切線,與圓相切于A,B,則直線AB的方程為x+3y-2=0.

查看答案和解析>>

同步練習(xí)冊答案