20.觀察下面一組等式:
S1=1,
S2=2+3+4=9,
S3=3+4+5+6+7=25,
S4=4+5+6+7+8+9+10=49,

根據(jù)上面等式猜測(cè)S2n-1=(4n-3)(an+b),則a2+b2=25.

分析 利用所給等式,對(duì)猜測(cè)S2n-1=(4n-3)(an+b),進(jìn)行賦值,即可得到結(jié)論.

解答 解:當(dāng)n=1時(shí),S1=(4ו1-3)(a+b)=a+b=1,①
當(dāng)n=2時(shí),S3=(4×2-3)(2a+b)=5(2a+b)=25,②,
由①②解得a=4,b=-3,
∴a2+b2=16+9=25,
故答案為:25.

點(diǎn)評(píng) 本題考查了歸納推理,根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),推出這類事物的所有對(duì)象都具有這種性質(zhì)的推理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.現(xiàn)采取隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊擊中目標(biāo)的概率.先由計(jì)算器給出0到9之間取整數(shù)的隨機(jī)數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示集中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組如下的隨機(jī)數(shù):
7527  0293   7140   9857   0347   4373   8636   6947   1417   4698
0371  6233   2616   8045   6011   3661   9597   7424   7610   4281
根據(jù)以上數(shù)據(jù)估計(jì)該運(yùn)動(dòng)員射擊四次至少擊中三次的概率為:0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$夾角為$\frac{π}{3}$,|$\overrightarrow$|=2,對(duì)任意x∈R,有|$\overrightarrow+x\overrightarrow{a}$|≥|$\overrightarrow{a}-\overrightarrow$|,則|t$\overrightarrow$-$\overrightarrow{a}$|+|t$\overrightarrow$-$\frac{\overrightarrow{a}}{2}$|(t∈R)的最小值是( 。
A.$\frac{\sqrt{13}}{2}$B.$\frac{3}{2}$C.1+$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知P(2,0),Q是圓$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$上一動(dòng)點(diǎn),求PQ的中點(diǎn)軌跡方程,并說(shuō)明軌跡是什么樣的曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.為了判斷高中學(xué)生的文理科選修是否與性別有關(guān)系,隨機(jī)調(diào)查了50名學(xué)生,得到如下2×2的列聯(lián)表:
理科文科
1310
720
附:
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
根據(jù)表中數(shù)據(jù),得到${x^2}=\frac{{50×{{({13×20-10×7})}^2}}}{23×27×20×30}≈4.844$,則認(rèn)為選修文理科與性別有關(guān)系的可能性不低于95%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校在兩個(gè)班進(jìn)行學(xué)習(xí)方式對(duì)比試驗(yàn),半年后進(jìn)行了一次檢測(cè),試驗(yàn)班與對(duì)照班成績(jī)統(tǒng)計(jì)如2×2列聯(lián)表所示(單位:人).
80及80分以上80分以下合計(jì)
試驗(yàn)班301040
對(duì)照班18m40
合計(jì)4832n
(1)求m,n
(2)你有多大把握認(rèn)為“成績(jī)與學(xué)習(xí)方式有關(guān)系”?
參考公式及數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知圓心在x軸上的圓C與直線l:4x+3y-6=0切于點(diǎn)$M({\frac{3}{5},\frac{6}{5}})$.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)已知N(2,1),經(jīng)過(guò)原點(diǎn),且斜率為正數(shù)的直線m與圓C交于P(x1,y1),Q(x2,y2)兩點(diǎn),若|PN|2+|QN|2=24,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=ex(2x-1)-a(x-1)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1)B.(0,1)C.(4e${\;}^{\frac{3}{2}}$,+∞)D.(0,1)∪(4e${\;}^{\frac{3}{2}}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知點(diǎn)M(x,y)是圓C:x2+y2-2x=0的內(nèi)部任意一點(diǎn),則點(diǎn)M滿足y≥x的概率是( 。
A.$\frac{1}{4}$B.$\frac{π-2}{4}$C.$\frac{1}{2π}$D.$\frac{π-2}{4π}$

查看答案和解析>>

同步練習(xí)冊(cè)答案