1.若實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x-4y+4≤0}\\{x+y≤1}\\{x≥-3}\end{array}}\right.$,則x-y的最大值是( 。
A.-7B.$-\frac{13}{4}$C.-1D.7

分析 根據(jù)二元一次不等式組表示平面區(qū)域,畫出不等式組表示的平面區(qū)域,由z=x-y得y=x-z,利用平移求出z最大值即可.

解答 解:約束條件$\left\{{\begin{array}{l}{x-4y+4≤0}\\{x+y≤1}\\{x≥-3}\end{array}}\right.$對應(yīng)的平面區(qū)域如圖:(陰影部分). 
由z=x-y得y=x-z,平移直線y=x-z,
由平移可知當(dāng)直線y=x-z,經(jīng)過點A時,
直線y=x-z的截距最小,此時z取得最大值,
由$\left\{\begin{array}{l}{x=-3}\\{x+y=1}\end{array}\right.$,解得A(-3,4)代入z=x-y得z=-3-4=-1,
即z=x-y的最大值是-1,
故選:C.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a+3b=1,求:
(1)9a2+b2,9a2+(b-1)2的最小值;
(2)$\frac{1}{3a}$+$\frac{1}$(a,b>0),$\frac{4}{1-a}$+$\frac{1}{1-3b}$(a,b>0)的最小值;
(3)$\frac{1}{1-{a}^{2}}$+$\frac{1}{1-9^{2}}$(a,b>0),$\frac{{a}^{2}}{1-a}$+$\frac{3^{2}}{1-b}$(a,b>0)的最小值;
(4)$\sqrt{a+1}$+$\sqrt{b+1}$,$\sqrt{1-a}$+$\sqrt{2-6b}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中的假命題是( 。
A.?x∈R,x2≥0B.?x∈R,2x-1>0
C.?x∈R,lgx<1D.?x∈R,sinx+cosx=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1-3.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足a1b1+a2b2+…+anbn=3-$\frac{2n+3}{{2}^{n}}$,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,三棱柱ABC-A1B1C1的各棱長均為2,且側(cè)棱與底面垂直,其正(主)視圖如圖所示,則此三棱柱側(cè)(左)視圖的面積為( 。
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.計算:|3-i|=$\sqrt{10}$,$\frac{10i}{3-i}$=-1+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.原點到直線4x+3y-1=0的距離為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知元素為實數(shù)的集合S滿足下列條件:①0∉S,1∉S;②若a∈S,則$\frac{1}{1-a}$∈S.
(Ⅰ)若{2,-2}⊆S,求使元素個數(shù)最少的集合S;
(Ⅱ)若非空集合S為有限集,則你對集合S的元素個數(shù)有何猜測?并請證明你的猜測正確.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知三棱臺ABC-A1B1C1中,AB=BC=4,AC=2A1C1=2$\sqrt{2}$,AA1=CC1=1,平面AA1B1B⊥平面AA1C1C.
(1)求證:BB1⊥平面AA1C1C;
(2)點D為AB上一點,二面角D-CC1-B的大小為30°,求BC與平面DCC1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案