5.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,若該幾何體的頂點(diǎn)都在球O的球面上,則球O的表面積為( 。
A.25πB.50πC.75πD.100π

分析 由已知中的三視圖可得:該幾何體是一個三棱錐,其外接球相當(dāng)于一個長,寬,高分別為:5,4,3的長方體的外接球.

解答 解:由已知中的三視圖可得:該幾何體是一個三棱錐,
其外接球相當(dāng)于一個長,寬,高分別為:5,4,3的長方體的外接球,
故球O的半徑R滿足:4R2=32+42+52=50,
故球O的表面積S=50π,
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是球的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$f(x)=2sinx+1({\frac{1}{2}π<x<\frac{3}{2}π})$,${f^{-1}}({\frac{1}{2}})$=arcsin$\frac{1}{4}+π$,(用反三角形式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.張三同學(xué)從7歲起到13歲每年生日時(shí)對自己的身高測量后記錄如表:
年齡 (歲)78910111213
身高 (cm)121128135141148154160
(Ⅰ)求身高y關(guān)于年齡x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學(xué)7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預(yù)測張三同學(xué)15歲時(shí)的身高.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{1}-\overline{x})({y}_{1}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\overline{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2為它的左、右焦點(diǎn),P為橢圓上一點(diǎn),已知∠F1PF2=60°,S${\;}_{△{F}_{1}P{F}_{2}}$=$\sqrt{3}$,且橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓方程;
(2)已知T(-4,0),過T的直線與橢圓交于M、N兩點(diǎn),求△MNF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線E:$\frac{x^2}{a^2}+{y^2}$=1(a>b,a≠1)上兩點(diǎn)A(x1,y1),B(x2,y2)(x1≠x2).
(1)若點(diǎn)A,B均在直線y=2x+1上,且線段AB中點(diǎn)的橫坐標(biāo)為-$\frac{1}{3}$,求a的值;
(2)記$\overrightarrow m=(\frac{x_1}{a},{y_1}),\overrightarrow n=(\frac{x_2}{a},{y_2})$,若$\overrightarrow m⊥\overrightarrow n$為坐標(biāo)原點(diǎn),試探求△OAB的面積是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的函數(shù)滿足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)•x,則f′(1)=( 。
A.2B.eC.3D.2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-mx+m(m∈R).
(1)當(dāng)m>0時(shí),求f′(x)+mx的最小值;
(2)若f(x)>0在x∈(0,+∞)上有解,求實(shí)數(shù)m的取值集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知(如圖)為某四棱錐的三視圖,則該幾何體體積為$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}滿足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,Sn是數(shù)列{an}的前n項(xiàng)和,若S2017+m=1010,且a1•m>0,則$\frac{1}{a_1}+\frac{1}{m}$的最小值為( 。
A.2B.$\sqrt{2}$C.$2\sqrt{2}$D.$2+\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案