2.已知角α的終邊在直線$y=-\sqrt{3}x$上,
(1)求tanα,并寫出與α終邊相同的角的集合S;
(2)求值$\frac{{\sqrt{3}sin({α-π})+5cos({2π-α})}}{{-\sqrt{3}cos({\frac{3π}{2}+α})+cos({π+α})}}$.

分析 (1)利用任意角的三角函數(shù)的定義,求得tanα的值,再根據(jù)終邊相同的角的表達(dá)方式求得與α終邊相同的角的集合S.
(2)利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,求得所給式子的值.

解答 解:(1)∵角α的終邊在直線$y=-\sqrt{3}x$上,
∴tanα=-$\sqrt{3}$,與α終邊相同的角的集合S={α|α=2kπ+$\frac{2π}{3}$,或α=2kπ-$\frac{π}{3}$,k∈Z,},
即S={α|α=kπ+$\frac{2π}{3}$,k∈Z}.
(2)$\frac{{\sqrt{3}sin({α-π})+5cos({2π-α})}}{{-\sqrt{3}cos({\frac{3π}{2}+α})+cos({π+α})}}$=$\frac{-\sqrt{3}sinα+5cosα}{-\sqrt{3}sinα-cosα}$=$\frac{-\sqrt{3}tanα+5}{-\sqrt{3}tanα-1}$=$\frac{\sqrt{3}tanα-5}{\sqrt{3}tanα+1}$=4.

點評 本題主要考查任意角的三角函數(shù)的定義,終邊相同的角的表達(dá)方式,同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.展開式${({{x^2}-\frac{2}{x^3}})^5}$中的常數(shù)項為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,已知sin2A+sin2B=sin2C,求證這個三角形是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的各項為正數(shù),其前n項和為Sn滿足${S_n}={(\frac{{{a_n}+1}}{2})^2}$,設(shè)bn=10-an(n∈N).
(1)求證:數(shù)列{an}是等差數(shù)列,并求{an}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為Tn,求Tn的最大值.
(3)設(shè)數(shù)列{bn}的通項公式為${b_n}=\frac{a_n}{{{a_n}+t}}$,問:是否存在正整數(shù)t,使得b1,b2,bm(m≥3,m∈N)成等差數(shù)列?若存在,求出t和m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|對于任意b∈R都成立.
(1)求a的值;
(2)設(shè)x>y>0,求證:$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如果復(fù)數(shù)z=a2+a-2+(a2-1)i為純虛數(shù),則實數(shù)a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點A(-3,-$\frac{{\sqrt{6}}}{2}$)是拋物線C:y2=2px(p>0)準(zhǔn)線上的一點,點F是C的焦點,點P在C上且滿足|PF|=m|PA|,當(dāng)m取最小值時,點P恰好在以原點為中心,F(xiàn)為焦點的雙曲線上,則該雙曲線的離心率為(  )
A.3B.$\frac{3}{2}$C.$\sqrt{2}+1$D.$\frac{{\sqrt{2}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.cos(-390°)=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a+b=1,對?a,b∈(0,+∞)
(1)求$\frac{1}{a}$+$\frac{4}$≥|2x-1|-|x+1|的最小值為M.
(2))M≥|2x-1|-|x+1|恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案