7.已知數(shù)列{an}各項均為正數(shù),a1=$\frac{1}{2}$,對任意的n∈N*,有an+1=an+$\frac{1}{2016}$an2,若an>1,則n的最小值為2018.

分析 an+1=an+$\frac{1}{2016}$an2,a1=$\frac{1}{2}$,可得an+1>an>0.可得:$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,可得$\frac{1}{{a}_{1}+2016}$+$\frac{1}{{a}_{2}+2016}$+…+$\frac{1}{{a}_{n}+2016}$=2-$\frac{1}{{a}_{n+1}}$,通過放縮可得:2-$\frac{1}{{a}_{n+1}}$<$\frac{n}{{a}_{1}+2016}$,當(dāng)n=2016時,得a2017<1.2-$\frac{1}{{a}_{n+1}}$>$\frac{n}{{a}_{n}+2016}$.當(dāng)n=2017時,得
a2018>1.即可得出.

解答 解:∵an+1=an+$\frac{1}{2016}$an2,a1=$\frac{1}{2}$,∴an+1>an>0.
∴$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
∴$\frac{1}{{a}_{1}+2016}$+$\frac{1}{{a}_{2}+2016}$+…+$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=2-$\frac{1}{{a}_{n+1}}$,
∴2-$\frac{1}{{a}_{n+1}}$<$\frac{n}{{a}_{1}+2016}$.
當(dāng)n=2016時,2-$\frac{1}{{a}_{2017}}$<$\frac{2016}{\frac{1}{2}+2016}$<1,得a2017<1.
2-$\frac{1}{{a}_{n+1}}$>$\frac{n}{{a}_{n}+2016}$.
當(dāng)n=2017時,2-$\frac{1}{{a}_{2018}}$>$\frac{2017}{{a}_{2017}+2016}$>1,得a2018>1.
因此存在n,使得an>1,且n的最小值為2018.
故答案為:2018.

點評 本題考查了數(shù)列遞推關(guān)系、放縮方法、裂項求和方法,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知O是坐標(biāo)原點,雙曲線${x^2}-\frac{y^2}{n^2}=1({n>0})$的兩條漸近線分別為l1,l2,右焦點為F,以O(shè)F為直徑的圓交l1于異于原點O的點A,若點B在l2上,且$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,則雙曲線的方程為( 。
A.${x^2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{5}=1$D.${x^2}-\frac{y^2}{6}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)4輛汽車的速度用用莖葉圖表示如圖示,若從中任取2輛,則恰好有1輛汽車超速的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.全集U={1,2,3,4,5,6},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},則集合∁U(A∪B)的子集個數(shù)為(  )
A.1B.3C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知焦點為F的拋物線y2=2px(p>0)上有一點$A({m,2\sqrt{2}})$,以A為圓心,|AF|為半徑的圓被y軸截得的弦長為$2\sqrt{7}$,則m=( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=\frac{cos6x}{{{2^x}-{2^{-x}}}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線x2=4y的焦點為F,設(shè)A(x1,y1),B(x2,y2)是拋物線上的兩個動點,如滿足y1+y2+2=$\frac{2\sqrt{3}}{3}$|AB|,則∠AFB的最大值( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨著社會發(fā)展,襄陽市在一天的上下班時段也出現(xiàn)了堵車嚴(yán)重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r段(T≥3 ),從襄陽市交通指揮中心隨機選取了一至四馬路之間50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(I)據(jù)此直方圖估算交通指數(shù)的中位數(shù)和平均數(shù);
(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個路段至少有2個嚴(yán)重?fù)矶碌母怕适嵌嗌伲?br />(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人用時間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足:a1=1,nan+1-(n+1)an=1(n∈N+
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{{{a_n}+1}}{2}•{(\frac{8}{9})^n}(n∈{N_+})$,求數(shù)列{bn}的最大項.

查看答案和解析>>

同步練習(xí)冊答案