17.已知O是坐標(biāo)原點(diǎn),雙曲線${x^2}-\frac{y^2}{n^2}=1({n>0})$的兩條漸近線分別為l1,l2,右焦點(diǎn)為F,以O(shè)F為直徑的圓交l1于異于原點(diǎn)O的點(diǎn)A,若點(diǎn)B在l2上,且$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,則雙曲線的方程為( 。
A.${x^2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{5}=1$D.${x^2}-\frac{y^2}{6}=1$

分析 求出雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線的方程和圓的方程,聯(lián)立方程求出A,B的坐標(biāo),結(jié)合點(diǎn)B在漸近線y=-$\frac{a}$x上,建立方程關(guān)系求得A的坐標(biāo),設(shè)B(m,n),運(yùn)用向量的坐標(biāo)關(guān)系,結(jié)合B在漸近線上,可得a,c的關(guān)系,再由a=1,即可得到c,b,進(jìn)而得到所求雙曲線的方程.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程
l1,y=$\frac{a}$x,l2,y=-$\frac{a}$x,
F(c,0),
圓的方程為(x-$\frac{c}{2}$)2+y2=$\frac{{c}^{2}}{4}$,將y=$\frac{a}$x代入圓的方程,
得(x-$\frac{c}{2}$)2+($\frac{a}$x)2=$\frac{{c}^{2}}{4}$,
即$\frac{{c}^{2}}{{a}^{2}}$x2=cx,則x=0或x=$\frac{{a}^{2}}{c}$,
當(dāng)x=$\frac{{a}^{2}}{c}$,y═$\frac{a}$•$\frac{{a}^{2}}{c}$=$\frac{ab}{c}$,即A($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
設(shè)B(m,n),則n=-$\frac{a}$•m,
則$\overrightarrow{BA}$=($\frac{{a}^{2}}{c}$-m,$\frac{ab}{c}$-n),$\overrightarrow{AF}$=(c-$\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
∵$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,
∴$\frac{1}{2}$($\frac{{a}^{2}}{c}$-m,$\frac{ab}{c}$-n)=(c-$\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
則$\frac{{a}^{2}}{c}$-m=2(c-$\frac{{a}^{2}}{c}$),$\frac{ab}{c}$-n=2•(-$\frac{ab}{c}$),
即m=$\frac{3{a}^{2}}{c}$-2c,n=$\frac{3ab}{c}$,
即$\frac{3ab}{c}$=-$\frac{a}$•($\frac{3{a}^{2}}{c}$-2c)=-$\frac{3ab}{c}$+$\frac{2bc}{a}$,
即$\frac{6ab}{c}$=$\frac{2bc}{a}$,
則c2=3a2,
由雙曲線${x^2}-\frac{y^2}{n^2}=1({n>0})$可得a=1,c=$\sqrt{3}$,b=n=$\sqrt{3-1}$=$\sqrt{2}$.
則雙曲線的方程為x2-$\frac{{y}^{2}}{2}$=1.
故選:B.

點(diǎn)評(píng) 本題主要考查雙曲線方程的求法,注意運(yùn)用漸近線方程和圓的方程聯(lián)立,根據(jù)條件建立方程關(guān)系,求出交點(diǎn)坐標(biāo),轉(zhuǎn)化為a,b,c的關(guān)系是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川省高二上學(xué)期期中考數(shù)學(xué)試卷(解析版) 題型:填空題

直線與直線間的距離是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=aex+(2-e)x(a為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在x=0處的切線與直線(3-e)x-y+10=0平行.
(1)求實(shí)數(shù)a的值,并判斷函數(shù)f(x)在區(qū)間[0,+∞)內(nèi)的零點(diǎn)個(gè)數(shù);
(2)證明:當(dāng)x>0時(shí),f(x)-1>xln(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z=1+3i$(i為虛數(shù)單位),則復(fù)數(shù)$\frac{z}{1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an},前n項(xiàng)和為Sn,${a_2}{a_8}={a_m}^2=1024$且a1=2,則Sm=62.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合$A=\left\{{({x,y})|{{({x-3})}^2}+{{({y-4})}^2}=\frac{4}{5}}\right\},B=\left\{{({x,y})|{{({x-3})}^2}+{{({y-4})}^2}=\frac{36}{5}}\right\}$,C={(x,y)|2|x-3|+|y-4|=λ},若(A∪B)∩C≠ϕ,則實(shí)數(shù)λ的取值范圍是(  )
A.$[{\frac{{2\sqrt{5}}}{5},2}]∪[{\frac{{6\sqrt{5}}}{5},6}]$B.$[{\frac{{2\sqrt{5}}}{5},6}]$C.$[{\frac{{2\sqrt{5}}}{5},2}]∪[{4,6}]$D.$\left\{2\right\}∪[{\frac{{6\sqrt{5}}}{5},6}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{3}{2}$(an-1),數(shù)列{bn}滿足bn+2=2bn+1-bn,且b6=a3,b60=a5,其中n∈N*.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=(-1)nbnbn+1,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}各項(xiàng)均為正數(shù),a1=$\frac{1}{2}$,對(duì)任意的n∈N*,有an+1=an+$\frac{1}{2016}$an2,若an>1,則n的最小值為2018.

查看答案和解析>>

同步練習(xí)冊(cè)答案