A. | ${x^2}-\frac{y^2}{3}=1$ | B. | ${x^2}-\frac{y^2}{2}=1$ | C. | ${x^2}-\frac{y^2}{5}=1$ | D. | ${x^2}-\frac{y^2}{6}=1$ |
分析 求出雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線的方程和圓的方程,聯(lián)立方程求出A,B的坐標(biāo),結(jié)合點(diǎn)B在漸近線y=-$\frac{a}$x上,建立方程關(guān)系求得A的坐標(biāo),設(shè)B(m,n),運(yùn)用向量的坐標(biāo)關(guān)系,結(jié)合B在漸近線上,可得a,c的關(guān)系,再由a=1,即可得到c,b,進(jìn)而得到所求雙曲線的方程.
解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程
l1,y=$\frac{a}$x,l2,y=-$\frac{a}$x,
F(c,0),
圓的方程為(x-$\frac{c}{2}$)2+y2=$\frac{{c}^{2}}{4}$,將y=$\frac{a}$x代入圓的方程,
得(x-$\frac{c}{2}$)2+($\frac{a}$x)2=$\frac{{c}^{2}}{4}$,
即$\frac{{c}^{2}}{{a}^{2}}$x2=cx,則x=0或x=$\frac{{a}^{2}}{c}$,
當(dāng)x=$\frac{{a}^{2}}{c}$,y═$\frac{a}$•$\frac{{a}^{2}}{c}$=$\frac{ab}{c}$,即A($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
設(shè)B(m,n),則n=-$\frac{a}$•m,
則$\overrightarrow{BA}$=($\frac{{a}^{2}}{c}$-m,$\frac{ab}{c}$-n),$\overrightarrow{AF}$=(c-$\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
∵$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,
∴$\frac{1}{2}$($\frac{{a}^{2}}{c}$-m,$\frac{ab}{c}$-n)=(c-$\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
則$\frac{{a}^{2}}{c}$-m=2(c-$\frac{{a}^{2}}{c}$),$\frac{ab}{c}$-n=2•(-$\frac{ab}{c}$),
即m=$\frac{3{a}^{2}}{c}$-2c,n=$\frac{3ab}{c}$,
即$\frac{3ab}{c}$=-$\frac{a}$•($\frac{3{a}^{2}}{c}$-2c)=-$\frac{3ab}{c}$+$\frac{2bc}{a}$,
即$\frac{6ab}{c}$=$\frac{2bc}{a}$,
則c2=3a2,
由雙曲線${x^2}-\frac{y^2}{n^2}=1({n>0})$可得a=1,c=$\sqrt{3}$,b=n=$\sqrt{3-1}$=$\sqrt{2}$.
則雙曲線的方程為x2-$\frac{{y}^{2}}{2}$=1.
故選:B.
點(diǎn)評(píng) 本題主要考查雙曲線方程的求法,注意運(yùn)用漸近線方程和圓的方程聯(lián)立,根據(jù)條件建立方程關(guān)系,求出交點(diǎn)坐標(biāo),轉(zhuǎn)化為a,b,c的關(guān)系是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年四川省高二上學(xué)期期中考數(shù)學(xué)試卷(解析版) 題型:填空題
直線與直線間的距離是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{{2\sqrt{5}}}{5},2}]∪[{\frac{{6\sqrt{5}}}{5},6}]$ | B. | $[{\frac{{2\sqrt{5}}}{5},6}]$ | C. | $[{\frac{{2\sqrt{5}}}{5},2}]∪[{4,6}]$ | D. | $\left\{2\right\}∪[{\frac{{6\sqrt{5}}}{5},6}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com