7.為了解兒子身高與其父親身高的關系,隨機抽取5對父子的身高數(shù)據(jù)如下:
父親身高x/cm174176176176178
兒子身高y/cm175176177178179
則y對x的線性回歸方程為( 。
A.$\widehat{y}$=x-1B.$\widehat{y}$=x+1C.$\widehat{y}$=88+$\frac{1}{2}$xD.$\widehat{y}$=176

分析 根據(jù)所給的數(shù)據(jù)計算出x,y的平均數(shù),根據(jù)樣本中心點一定在線性回歸直線上,把樣本中心點代入四個選項中對應的方程,即可得到結論.

解答 解:∵$\overline{x}$=176,$\overline{y}$=177,
∴樣本組數(shù)據(jù)的樣本中心點是(176,177),
故選B.

點評 本題考查求線性回歸方程,考查學生的計算能力,利用樣本中心點一定在線性回歸直線上是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知直線x-ay+a=0與直線2x+y+2=0平行,則實數(shù)a的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$f(x)=\frac{x}{{{2^x}-1}},g(x)=\frac{x}{2}$,則下列結論正確的是( 。
A.h(x)=f(x)+g(x)是偶函數(shù)B.h(x)=f(x)+g(x)是奇函數(shù)
C.h(x)=f(x)g(x)是奇函數(shù)D.h(x)=f(x)g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若a+b+c=3,且a、b、c∈R+,則$\frac{1}{a+b}+\frac{1}{c}$的最小值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知cosθ=$\frac{1}{3}$,且θ是第四象限角,則sinθ的值是( 。
A.-$\frac{1}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$±\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知拋物線y2=2px(p>0)過點A(2,2),則它的準線方程是( 。
A.$x=-\frac{1}{2}$B.$y=-\frac{1}{2}$C.$x=\frac{1}{2}$D.$y=\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.過曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0\;,\;b>0)$的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,延長F1M交曲線C3:y2=2px(p>0)于點N,其中C1、C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為$\frac{{\sqrt{5}\;+1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長為2的等邊三角形,PC=$\sqrt{13}$,M在PC上,且PA∥面MBD.
(1)求證:M是PC的中點;
(2)在PA上是否存在點F,使二面角F-BD-M為直角?若存在,求出$\frac{AF}{AP}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.一個棱長為$6\sqrt{2}$的正四面體紙盒內放一個正方體,若正方體可以在紙盒內任意轉動,則正方體棱長的最大值為(  )
A.1B.$\sqrt{2}$C.2D.3

查看答案和解析>>

同步練習冊答案